研究论文

不同功能单体合成的谷胱甘肽分子印迹聚合物的研究

  • 辛瑜 ,
  • 仝艳军 ,
  • 杨海麟 ,
  • 张玲 ,
  • 张玉然 ,
  • 陈亦 ,
  • 王武
展开
  • 江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122

收稿日期: 2011-07-15

  修回日期: 2011-11-08

  网络出版日期: 2011-12-14

基金资助

2010 年江苏省科技支撑(No. SBE201077545)、2011 年江苏省科技支撑(No. SBE201170578)、工业微生物重点实验室开放课题(No. KLIB-KF201005)、江苏省高校优势学科建设工程资助项目和“111”引智(No. 111-2-06)资助项目.

Study on the Glutathione Molecularly Imprinted Polymers with Different Functional Monomers

  • Xin Yu ,
  • Tong Yanjun ,
  • Yang Hailin ,
  • Zhang Ling ,
  • Zhang Yuran ,
  • Chen Yi ,
  • Wang Wu
Expand
  • Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122

Received date: 2011-07-15

  Revised date: 2011-11-08

  Online published: 2011-12-14

Supported by

Project Supported by the Program of the Science and Technology Support Plan of Jiangsu Province (Nos. SBE201077545, SBE201170578), the Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (No. KLIB-KF201005), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06).

摘要

采用分子印迹技术, 以谷胱甘肽为模板分子, 以丙烯酰胺、甲基丙烯酸为功能单体制备分子印迹聚合物; 通过静态吸附试验, 探讨了合成分子印迹聚合物时模板分子与功能单体的物质的量比、上样液pH 值、吸附平衡时间、上样液浓度对聚合物吸附性能的影响; 实验结果表明: 以丙烯酰胺、甲基丙烯酸为功能单体制备谷胱甘肽分子印迹聚合物时,谷胱甘肽与丙烯酰胺、甲基丙烯酸的最适摩尔比分别为1:5 和1:4, 以及最适静态吸附条件为: 上样液pH 值分别为3.0 和5.0 左右; 上样液浓度分别为1.50~2.00 g/L 和1.00~1.50 g/L; 静态吸附平衡时间为18 和20 h 左右. 同时也探讨了分子印迹聚合物对谷胱甘肽结构类似物的吸附性能, 结果表明, 所合成的分子印迹聚合物对谷胱甘肽具有良好的选择性吸附能力. 同时也研究了分子印迹聚合物对酵母抽提物中谷胱甘肽的吸附性能, 以丙烯酰胺和甲基丙烯酸为功能单体制备的分子印迹聚合物对混合体系中谷胱甘肽的一次性提取率分别为41%和77%. 分子印迹聚合物均表现出了较好的吸附特性, 为分离提纯谷胱甘肽提供一种可选择的途径.

本文引用格式

辛瑜 , 仝艳军 , 杨海麟 , 张玲 , 张玉然 , 陈亦 , 王武 . 不同功能单体合成的谷胱甘肽分子印迹聚合物的研究[J]. 化学学报, 2012 , 70(06) : 803 -811 . DOI: 10.6023/A1107154

Abstract

Using glutathione (GSH) as template molecule, acrylamide (AM) and methacrylic acid (MAA) as functional monomer, different glutathione-molecularly imprinted polymers (GSH-MIPs) were developed and synthesized with molecularly imprinted technique. The effects for adsorption capacity, including molar ratio of template molecule-functional monomer, pH of loading buffer, adsorption equilibrium time and loading concentration were discussed in detail. The result demonstrated that the polymers with raw material mole ratios at 1:5 for GSH:AM, and 1:4 for GSH:MAA showed higher adsorption capacity, the optimal pH values for the adsorption of GSH-MIPAMs and GSH-MIPMAAs to GSH were 3.0 and 5.0, respectively; furthermore, the optimal GSH loading concentrations were 1.50~2.00 g/L for GSH-MIPAMs, and 1.00~ 1.50 g/L for GSH-MIPMAAs; additionally, the adsorption equilibrium time was 20 h for GSH-MIPAMs and 18 h for GSH-MIPMAAs. In addition, the binding of GSH analogues were also applied to the synthesized polymers, and the results reflected that GSH-MIPs showed low recognition to these analogues. This protocol was further employed for the extraction and separation of GSH from yeast cells samples. The extraction recoveries of GSH-MIPAMs and GSH-MIPMAAs were 41% and 77%, respectively, it was of great potential in the purification of GSH.

参考文献

1 Mullett, W. M.; Lai, E. P. Anal. Chem. 1998, 70, 3636.  

2 Takateru, M.; Takayuki, H. Anal. Chim. Acta 2007, 591, 63.  

3 Del Sole, R.; Scardino, A.; Lazzoi, M. R.; Vasapollo, G. J. Appl. Polym. Sci. 2011, 120, 1634.  

4 Matsui, J.; Nicholls, I. A.; Karube, I. J. Org. Chem. 1996,61, 5414.  

5 Gholivand, M. B.; Torkashvand, M. Talanta 2011, 84, 905.  

6 Nicholls, I. A.; Ramstrom, O.; Mosbach, K. J. Chromatogr. A 1995, 691, 349.  

7 Keçili, R.; Özcan, A. A.; Ersöz, A.; Hür, D.; Denizli, A.; Say, R. J. Nanopart. Res. 2011, 13, 2073.  

8 Levi, R.; McNiven, S.; Piletsky, S.; Cheong, S.; Yano, K.; Karube, I. Anal. Chem. 1997, 69, 2017.  

9 Djozan, D.; Farajzadeh, M.; Sorouraddin, S.; Baheri, T. Chromatographia 2011, 73, 975.  

10 Kataoka, K.; Senoo, Y.; Tawabata, T.; Yoshimura, Y.; Soda, K. JP 06/056884, 1994 [Chem. Abstr. 1994, 121, 33295].

11 Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Nature 1975,258, 598.  

12 Lin, D. Q.; Mei, L. H.; Zhu, Z. Q. 98 “The Fourth National Solvent Extraction Academic Meeting”, Guangzhou, 1998, p. 255 (in Chinese). (林东强, 梅乐和, 朱自强, 98 全国第四届溶剂萃取学术 会议, 广州, 1998, p. 255.)

13 Li, Q.; Du, Y. L.; He, K. K.; Li, F. Chem. J. Chin. Univ.2007, 28, 1059 (in Chinese). (李琼, 杜艳丽, 杨科珂, 李方, 高等学校化学学报, 2007,28, 1059.)

14 Strikovsky, A. G.; Kasper, D.; Grun, M. J. Am. Chem. Soc.2000, 122, 6295.  

15 Tse Sum Bui, B.; Haupt, K. Anal. Bioanal. Chem. 2010,398, 2481.  

16 Rechichi, A.; Cristallini, C.; Vitale, U.; Ciardelli, G.; Barbani, N.; Vozzi, G.; Giusti, P. J. Cell. Mol. Med. 2007,11, 1367.  

17 Komiyama, T. Molecular Imprinting—From Fundamentals to Application, Trans.: Wu, S.-K.; Wang, P.-F., Science Press, Beijing, 2006, pp. 8~11 (in Chinese). (小宫山真, 分子印迹学—从基础到应用, 吴世康, 汪鹏 飞译, 科学出版社, 北京, 2006, pp. 8~11.)

18 Liu, J. Q.; Wulff, G. J. Am. Chem. Soc. 2004, 126, 7452.  

19 Gómez-Pineda, L. A.; Pina-Luis, G. E.; Cuán, á.; Garcí a-Calzón, J. A. React. Funct. Polym. 2011, 71, 402.  

20 Lu, C. Y.; He, H. C.; Ma, X. X.; Zhang, J.; He, X. W. Acta Chim. Sinica 2004, 62, 799 (in Chinese). (卢春阳, 何海成, 马向霞, 张佳, 何锡文, 化学学报,2004, 62, 799.)

21 Shi, X. Z.; Wu, A. B.; Qu, G. R.; Li, R. X.; Zhang, D. B. Biomaterials 2007, 28, 3741.  

22 Zheng, N.; Li, Y. Z.; Wang, Z. M.; Chang, W. B.; Li, T. J. Acta Chim. Sinica 2001, 59, 1572 (in Chinese). (郑宁, 李元宗, 王宗睦, 常文保, 李铁津, 化学学报,2001, 59, 1572.)

23 Cirillo, G.; Curcio, M.; Parisi, O. I.; Puoci, F.; Iemma, F.; Spizzirri, U. G.; Restuccia, D.; Picci, N. Food Chem. 2011,125, 1058.  

24 Sun, B. W.; Wu, L. Q.; Li, Y. Z. Acta Chim. Sinica 2004, 62,598 (in Chinese). (孙宝维, 武利庆, 李元宗, 化学学报, 2004, 62, 598.)

25 Xin, Y.; Dong, D.-X.; Wang, T.; Li, R.-X. J. Chromatogr. B2007, 859, 111.  

26 Buszewski, B.; Ri?anyová, J.; Gadzata-Kopciuch, R.; Szumski, M. Anal. Bioanal. Chem. 2010, 397, 2977.  
文章导航

/