研究简报

甘油-水-氯化钠三元溶液中甘油浓度对甘油自扩散系数的影响

  • 陈聪 ,
  • 李维仲 ,
  • 宋永臣 ,
  • 翁林岽 ,
  • 张宁
展开
  • 大连理工大学海洋能源利用与节能教育部重点实验室 大连 116024

收稿日期: 2011-07-15

  修回日期: 2012-01-06

  网络出版日期: 2012-01-06

基金资助

教育部中央高校基本科研业务费专项资金(No. DUT11NY01), 高等学校博士学科点专项科研基金新教师基金(No. 20110041120035)和国家自然科学基金重点(No. 50736001)资助项目.

Effects of Glycerol Concentrations on Self-diffusion Coefficients of Glycerol in Glycerol-Water-Sodium Chloride Ternary Solutions

  • Chen Cong ,
  • Li Weizhong ,
  • Song Yongchen ,
  • Weng Lindong ,
  • Zhang Ning
Expand
  • Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024

Received date: 2011-07-15

  Revised date: 2012-01-06

  Online published: 2012-01-06

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. DUT11NY01), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110041120035) and NSFC’s Key Program Project (No. 50736001).

摘要

利用分子动力学模拟方法研究了浓度对甘油-水-氯化钠三元溶液中甘油自扩散系数的影响. 随着甘油浓度的增大, 甘油的自扩散系数逐渐减小. 氢键分析表明, 甘油自扩散系数的减小来源于其参与的甘油-水氢键数目的减少和甘油-甘油氢键数目的增加.

本文引用格式

陈聪 , 李维仲 , 宋永臣 , 翁林岽 , 张宁 . 甘油-水-氯化钠三元溶液中甘油浓度对甘油自扩散系数的影响[J]. 化学学报, 2012 , 70(08) : 1043 -1046 . DOI: 10.6023/A1107153

Abstract

Glycerol self-diffusion coefficients in glycerol-water-sodium chloride ternary solutions with different concentrations have been predicted using molecular dynamics simulation method. As glycerol concentration increases, glycerol self-diffusion coefficient decreases. Hydrogen bonds analysis has been made and it has been found that decreasing of glycerol self-diffusion coefficients is caused by decreasing of mean number of glycerol-water hydrogen bonds and increasing of mean number of glycerol-glycerol hydrogen bonds.

参考文献

1 Castello, M. L.; Dweck, J.; Aranda, D. A. G. J. Therm. Anal. Calorim. 2009, 97, 627.  

2 Morris, G. J.; Goodrich, M.; Acton, E.; Fonseca, F. Cryobiology 2006, 52, 323.  

3 Gonzalez, J. A. T.; Longinotti, M. P.; Corti, H. R. J. Chem. Eng. Data 2011, 56, 1397.  

4 Fita, P.; Punzi, A.; Vauthey, E. J. Phys. Chem. C 2009, 113,20705.  

5 Soujanya, J.; Satyavathi, B.; Prasad, T. E. V. J. Chem. Thermodyn. 2010, 42, 621.  

6 Hayashi, Y.; Puzenko, A.; Feldman, Y. J. Non-Cryst. Solids2006, 352, 4696.  

7 Behrends, R.; Fuchs, K.; Kaatze, U. J. Chem. Phys. 2006,124, 144512.

8 Sudo, S.; Shimomura, M.; Shinyashiki, N.; Yagihara, S. J. Non-Cryst. Solids 2002, 307-310, 356.  

9 Murthy, S. S. N. J. Phys. Chem. B 2000, 104, 6955.  

10 Hey, J. M.; MacFarlane, D. R. Cryobiology 1998, 37, 119.  

11 Hey, J. M.; Macfarlane, D. R. Cryobiology 1996, 33, 205.  

12 Vigier, G.; Vassoille, R. Cryobiology 1987, 24, 345.  

13 Li, D. X.; Liu, B. L.; Liu, Y. S.; Chen, C. L. Cryobiology2008, 56, 114.  

14 Inaba, A.; Andersson, O. Thermochim. Acta 2007, 461, 44.  

15 Zelent, B.; Nucci, N. V.; Vanderkooi, J. M. J. Phys. Chem. A 2004, 108, 11141.  

16 Wang, B. C.; Li, D. X.; Liu, B. L.; Chen, C. L. Mol. Simul.2010, 36, 1025.  

17 Weng, L. D.; Chen, C.; Zuo, J. G.; Li, W. Z. J. Phys. Chem. A 2011, 115, 4729.  

18 Kataoka, Y.; Kitadai, N.; Hisatomi, O.; Nakashima, S. Appl. Spectrosc. 2011, 65, 436.  

19 Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Liq. 2009,146, 23.  

20 Dashnau, J. L.; Nucci, N. V.; Sharp, K. A.; Vanderkooi, J. M. J. Phys. Chem. B 2006, 110, 13670.  

21 Shepard, M. L.; Goldston, C. S.; Cocks, F. H. Cryobiology1976, 13, 9.  

22 Jochem, M.; Korber, C. Cryobiology 1987, 24, 513.  

23 Kleinhans, F. W.; Mazur, P. Cryobiology 2007, 54, 212.  

24 Chenlo, F.; Moreira, R.; Pereira, G.; Bello, B. Eur. Food Res. Technol. 2004, 219, 403.

25 Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. THEOCHEM J. Mol. Struct. 2009, 916, 37.

26 Chen, C.; Li, W.; Song, Y.; Yang, J. Mol. Phys. 2009, 107,673.  

27 Tomlinson, D. J. Mol. Phys. 1973, 25, 735.  

28 D'Errico, G.; Ortona, O.; Capuano, F.; Vitagliano, V. J. Chem. Eng. Data 2004, 49, 1665.  

29 He, X.; Fowler, A.; Toner, M. J. Appl. Phys. 2006, 100,074702.

30 Wang, J. H. J. Phys. Chem. 1954, 58, 686.  

31 Wang, P.; Anderko, A. Ind. Eng. Chem. Res. 2003, 42,3495.  

32 Phillips, J. C.; Braun, R.; Wang, W.; Gumbar, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781.  

33 Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  

34 Reiling, S.; Schlenkrich, M.; Brickmann, J. J. Comput. Chem. 1996, 17, 450.  

35 Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089.

36 Procacci, P.; Marchi, M. J. Chem. Phys. 1996, 104, 3003.

37 Ryckaert, J. P. Mol. Phys. 1985, 55, 549.  

38 Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys.1994, 101, 4177.

39 Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. J. Chem. Phys. 1995, 103, 4613.

40 Brunger, A. T. X-PLOR, 3.1 ed., The Howard Higher Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, 1992.  

41 Chen, C.; Li, W.-Z. Acta Phys.-Chim. Sin. 2009, 25, 507.

42 Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water, Oxford University Press, London, 1969.  

文章导航

/