研究论文

DpenPhos/Rh(I)催化的β-脱氢氨基酸酯的不对称氢化反应

  • 刘龑 ,
  • 王正 ,
  • 丁奎岭
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2012-03-23

  网络出版日期: 2012-05-03

基金资助

项目受国家自然科学基金(Nos. 21172237, 21121062, 21032007)和“973计划”(No. 2010CB833300)资助.

DpenPhos/Rh(I) Catalyzed Asymmetric Hydrogenation of Dehydro-β-Amino Acid Esters

  • Liu Yan ,
  • Wang Zheng ,
  • Ding Kuiling
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2012-03-23

  Online published: 2012-05-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21172237, 21121062, 21032007) and Major Basic Research Program of China (No. 2010CB833300).

摘要

本文研究了一类结构可调手性单齿亚磷酰胺配体DpenPhos在Rh(I)催化的EZβ-脱氢氨基酸酯的不对称催化氢化反应中的应用. 经过系统的反应条件和配体结构优化, 发现N原子上含有H的亚磷酰胺配体与Rh(I)形成的催化剂通常比N原子上不含H的配体表现出更高的反应活性. 在Eβ-脱氢氨基酸酯的不对称氢化反应中, 催化剂(R,R)- 3k/Rh(I)表现突出, 可以实现底物的常压催化氢化, 取得了92%~96%的对映选择性, 催化剂用量可降低至0.2 mol%; 对于Zβ-脱氢氨基酸酯的不对称氢化反应, 则(R,R)-3l/Rh(I)为最优催化剂, 可以获得92%~98% ee值的氢化产物, 特别是对于β-芳基取代衍生物的氢化反应, 相应氢化产物的ee值可以达到96%~98%. 该类催化剂为天然或非天然光学活性β氨基酸的合成提供了一个简便、高效的方法.

本文引用格式

刘龑 , 王正 , 丁奎岭 . DpenPhos/Rh(I)催化的β-脱氢氨基酸酯的不对称氢化反应[J]. 化学学报, 2012 , 70(13) : 1464 -1470 . DOI: 10.6023/A12030050

Abstract

Enantiomerically pure β-amino acids and their derivatives are very important chiral building blocks for the synthesis of β-peptides, β-lactams, and many important biologically active compounds. Among various methods developed for their synthesis, catalytic asymmetric hydrogenation of the corresponding dehydro-β-amino acid esters represents one of the most efficient and environmentally benign approaches, in which the Rh(I) catalysts containing chiral phosphorous ligands play a central role. Although a variety of Rh(I) complexes of bidentate or monodentate ligands have been discovered for asymmetric hydrogenation of dehydro-β-amino acid esters, some challenging issues still remain in terms of efficiency, enantioselectivity, and substrate scope. In the present work, a variety of Rh(I) complexes of modular monodentate phosphoramidite ligands, DpenPhos, have been systematically investigated for the asymmetric hydrogenation of (E)- or (Z)-β-substituted dehydro-β-amino acid esters. It was found that the presence of a N-H moiety in the phosphoramidite ligand is critically important for achieving high activity of the catalysis. Both (Z)- and (E)-geometrical isomers of the β-acetamido acrylic acid esters can be hydrogenated in the presence of DpenPhos/Rh(I) catalysts to form the same enantiomers, albeit slightly different conditions were required to attain optimal enantioselectivities. (R,R)-3k/Rh(I) (1 mol%) was disclosed to be optimal for the hydrogenation of (E)-β-alkyl substituted dehydro-β-amino acid esters in dichloromethane under a relatively low pressure of hydrogen (0.5 MPa), affording the corresponding β-amino acid esters with 92%-96% ee. The reaction still proceeded smoothly without significant sacrifice of activity or enantioselectivity either at a catalyst loading of 0.2 mol% or 0.1 MPa pressure of H2. For the hydrogenation of more challenging (Z)-β-alkyl or aryl substituted dehydro-β-amino acid esters, (R,R)-3l/Rh(I) in combination with the dichloromethane/isopropanol (V/V=2/1) mixed solvent system turned out to be the best in terms of enantioselectivity and catalytic activity, giving a variety of β-alkyl or aryl substituted β-amino acid esters in >99% yields with excellent optical purities (92%-98% ee).

参考文献

[1] For reviews, see: (a) Handbook of Homogeneous Hydrogenation, Vol. 1—3, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Wein-heim, 2007; (b) Shang, G.; W. Li, X. Zhang, In Catalytic Asymmetric Synthesis, 3rd ed., Ed.: Ojima, I., Wiley-Blackwell, Hoboken, 2010, pp. 343—436.

[2] (a) Reetz, M. T.; Mehler, G. Angew. Chem. Int. Ed. 2000, 39, 3889; (b) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539; (c) Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961. For reviews: (d) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; De Vries, J. G. Acc. Chem. Res. 2007, 40, 1267; (e) Bruneau, C.; Renaud, J.-L. in Phosporus Ligands in Asymmetric Catalysis: Synthesis and Applications, Ed.: Börner, A., Wiley-VCH, Weinheim, 2008, pp. 36—69.

[3] (a) Komarov, I. V.; Börner, A. Angew. Chem. Int. Ed. 2001, 40, 1197; (b) Guo, H. C.; Ding, K.; Dai, L.-X. Chin. Sci. Bull. 2004, 49, 2003. (c) Teichert, J. F.; Feringa, B. L. Angew. Chem.. Int. Ed. 2010, 49, 2486; (d) Reetz, M. T. Angew. Chem. Int. Ed. 2008, 47, 2256; (e) Zhang, Z. F.; Xie, F.; Yang, B.; Yu, H.; Zhang, W. B. Chin. J. Org. Chem. 2011, 31, 429 (in Chinese). (张振峰, 谢芳, 杨波, 余焓, 张万斌, 有机化学, 2011, 31, 429.)

[4] (a) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480; (b) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2002, 41, 2348.

[5] (a) Liu, Y.; Ding, K. J. Am. Chem. Soc. 2005, 127, 10488; (b) Liu, Y.; Sandoval, C. A.; Yamaguchi, Y.; Zhang, X.; Wang, Z.; Kato, K.; Ding, K. J. Am. Chem. Soc. 2006, 128, 14212; (c) Zhang, J. Z.; Li, Y.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2011, 50, 11743; (d) Zhang, J. Z.; Dong, K.; Wang, Z.; Ding, K. Org. Biomol. Chem. 2011, 11, 1598.

[6] (a) Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6, 905; (b) von Nussbaum, F.; Spiteller, P. In Highlights in Bioorganic Chemistry: Methods and Application, Eds.: Schmuck, C.; Wennemers, H., Wiley-VCH, Weinheim, 2004, p. 63.

[7] For reviews, see: (a) Enantioselective Synthesis of β?Amino Acids, Eds.: Juaristi, E.; Soloshnok, V., John Wiley & Sons, Inc., Hoboken, 2005; (b) Weiner, B.; Szymański, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656; (c) Ma, Y.-H.; Zhang, Y.-J.; Zhang, W.-B. Chin. J. Org. Chem. 2007, 27, 289. (马元辉, 张勇健, 张万斌, 有机化学, 2007, 27, 289.)

[8] For early examples, see: (a) Achiwa, K.; Soga, T. Tetrahedron Lett. 1978, 13, 1119; (b) Lubell, W. D.; Kitamura, M.; Noyori, R. Tetra-hedron: Asymmetry 1991, 2, 543; (c) Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907.

[9] For examples, see: (a) Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646; (b) Tang, W.; Wang, W.; Chi, Y.; Zhang, X. Angew. Chem. Int. Ed. 2003, 41, 3509; (c) Zhou, Y. G.; Tang, W.; Wang, W. B.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952; (d) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett. 2001, 3, 1701; (e) Wu, H. P.; Hoge, G. Org. Lett. 2004, 6, 3645; (f) Lee, S.-G.; Zhang, Y. J. Org. Lett. 2002, 4, 2429; (g) Hu, X. P.; Zheng, Z. Org. Lett. 2005, 7, 419; (h) You, J.; Drexler, H. J.; Zhang, S.; Fischer, C.; Heller, D. Angew. Chem. Int. Ed. 2003, 42, 913; (i) Wu, J.; Chen, X.; Guo, R.; Yeung, C.-H.; Chan, A. S. C. J. Org. Chem. 2003, 68, 2490; (j) Tang, W.; Wu, S.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 9570; (k) Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.; Armstrong, III, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918; (l) Dai, Q.; Yang W.; Zhang, X. Org. Lett. 2005, 7, 5343; (m) Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T. T.-L.; Ji, J.-X.; Guo, R.; Pai, C.-C.; Zhou, Z.; Li, X.; Fan, Q.-H.; Chan, A. C. S. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5815; (n) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.; Zhou Z.; Chan, A. C. S. J. Am. Chem. Soc. 2006, 128, 5955; (o) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z. Org. Lett. 2006, 8, 3359; (p) Qiu, L.; Prashad, M.; Hu, B.; Prasad, K.; Repi?, O.; Blacklock, T. J.; Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16787; (q) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 2015.

[10] For examples, see: (a) Peña, D.; Minnaard, A. J.; de Vries, J. G; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 14552; (b) Reetz, M. T.; Li, X. Tetrahedron 2004, 60, 9709; (c) Lefort, L.; Boogers, J. A. F.; de Vreis, A. H. M.; De Vreis, J. G.; Org. Lett. 2004, 6, 1733; (d) Reetz, M. T.; Li, X. Angew. Chem. Int. Ed. 2005, 44, 2959; (e) Fu, Y.; Guo, X. X.; Zhou, S. F.; Hu, A. G.; Xie, J. H.; Zhou, Q. L. J. Org. Chem. 2004, 69, 4648; (f) Fu, Y.; Hou, G. H.; Xie, J. H.; Xing, L.; Wang, L. X.; Zhou, Q. L. J. Org. Chem. 2004, 69, 8157; (g) Huang, H. M.; Zheng, Z.; Luo, H. L.; Bai, C. M.; Hu, X.; Chen, H. L. J. Org. Chem. 2004, 69, 2335.

[11] Bernsmann, H.; V. D. Berg, M.; Hoen, R.; Minnaard, A. J.; Reetz, M. T.; Mehler, G.; de Vries, J. G.; Feringa, B. L. J. Org. Chem. 2005, 70, 943.
文章导航

/