研究论文

TiO2 纳米棒载Pd 催化剂的制备及其对甲酸的电催化氧化

  • 施毅 ,
  • 李建苹 ,
  • 邢俊飞 ,
  • 肖梅玲 ,
  • 陈煜 ,
  • 周益明 ,
  • 陆天虹 ,
  • 唐亚文
展开
  • 江苏省新型动力电池重点实验室 南京师范大学化学与材料科学学院 南京 210046

收稿日期: 2011-12-02

  修回日期: 2012-04-11

  网络出版日期: 2012-04-11

基金资助

国家863 计划(No. 2007AA05Z143)、国家自然科学基金(No. 21073094)、NSFC-云南省联合基金(No. U1137602)及江苏高校优势学科建设工程基金资助项目.

Preparation of TiO2-Nanorods Supported Pd Catalyst and Its Electrocatalytic Oxidation on Formic Acid

  • Shi Yi ,
  • Li Jianping ,
  • Xing Junfei ,
  • Xiao Meiling ,
  • Chen Yu ,
  • Zhou Yiming ,
  • Lu Tianhong ,
  • Tang Yawen
Expand
  • Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046

Received date: 2011-12-02

  Revised date: 2012-04-11

  Online published: 2012-04-11

Supported by

Project supported by the National 863 program of China (No. 2007AA05Z143), the National Natural Science Foundation of China (No. 21073094), the United Fund of NSFC and Yunnan Province (No. U1137602) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要

利用水热合成和无机溶胶法, 分别制备了具有棒状(TiO2-R)和无规则结构(TiO2-I)的锐钛矿相TiO2, 并以之为载体制备得到Pd/TiO2 电催化剂. 循环伏安测试显示, 与无规则TiO2 相比, 具有棒状结构的TiO2 载Pd 催化剂对甲酸氧化的电催化性能提高了70%; 计时电流测试显示, 运行3000 s 后, 甲酸在棒状TiO2 载Pd 催化剂上的氧化电流是无规则TiO2 载Pd 催化剂的16 倍. 其原因可能与TiO2 纳米棒拥有更好的电子传导性且表面拥有较多的活性含氧基团有关, 从而能够有效提高催化剂对甲酸氧化的电催化活性和抗毒化性能.

本文引用格式

施毅 , 李建苹 , 邢俊飞 , 肖梅玲 , 陈煜 , 周益明 , 陆天虹 , 唐亚文 . TiO2 纳米棒载Pd 催化剂的制备及其对甲酸的电催化氧化[J]. 化学学报, 2012 , 70(11) : 1257 -1262 . DOI: 10.6023/A1112022

Abstract

TiO2 nanorods (TiO2-R) and irregular TiO2 (TiO2-I) with anatase phase structure are synthesized by hydrothermal synthesis and inorganic sol gel method, respectively. Using as-prepared TiO2 as support, Pd/TiO2 catalysts are prepared by using sodium ethylenediamine tetracetate (EDTA) as complexing agent and NaBH4 as reductant. The studies of transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that the average particle size of Pd/TiO2-R catalyst is very similar to that of Pd/TiO2-I catalyst. Cyclic voltammetry measurements show that the peak current of formic acid oxidation at Pd/TiO2-R catalyst increases by 70%. Chronoamperometric measurements indicate that the current density at the Pd/TiO2-R catalyst electrode at 3000 s is almost 16 times larger than that at the Pd/TiO2-I catalyst electrode. These electrochemical experiments show that the electrocatalytic activity and long-term operation stability of Pd/TiO2-R catalyst are much better than that of Pd/TiO2-I catalyst for formic acid oxidation in acidic media, indicating that TiO2 nanorods support material can effectively promote the electrocatalytic activity and stability of Pd catalyst for formic acid electrooxidation. Likely, TiO2 nanorods possess good electronic conductivity and abundant surface oxygen-containing groups, which improve the electrocatalytic activity and the anti-poisoned performance of Pd catalyst for the formic acid electrooxidation. Thus, TiO2 nanorods with anatase phase structure possess the potential application prospect in direct formic acid fuel cell (DFAFC).

参考文献

1 Zhu, Y.; Ha, S. Y.; Masel, R. I. J. Power Sources 2004, 130,8.  

2 Brummer, S. B.; Makrides, A. C. J. Phys. Chem. 1964, 68,1448.  

3 Samjeske, G.; Miki, A.; Ye, S.; Osawa, M. J. Phys. Chem. B2006, 110, 16559.  

4 Zhao, J.-Y.; Zhou, Y.-M.; Wu, Y.-S.; Tang, Y.-W.; Chen, Y.; Lu, T.-H. Acta Chim. Sinica 2011, 69, 1179 (in Chinese). (赵佳越, 周益明, 吴云胜, 唐亚文, 陈煜, 陆天虹, 化学 学报, 2011, 69, 1179.)

5 Zhang, L.; Tang, Y.; Bao, J.; Lu, T.; Li, C. J. Power Sources 2006, 162, 177.  

6 Wang, X.; Tang, Y.; Gao, Y.; Lu, T. J. Power Sources2008, 175, 784.  

7 Mazumder, V.; Sun, S. J. Am. Chem. Soc. 2009, 131, 4588.  

8 Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. J. Am. Chem. Soc. 2008, 130, 5406.  

9 Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Appl. Catal. A1998, 173, 259.  

10 Coq, B.; Planeix, J.; Brotons, V. Appl. Catal. A 1998, 173,175.  

11 Wang, Z.-B.; Yin, G.-P.; Shi, P.-F. Acta Chim. Sinica 2005,63, 1813 (in Chinese). (王振波, 尹鸽平, 史鹏飞, 化学学报, 2005, 63, 1813.)

12 Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature1998, 383, 346.

13 Lü, Y.-Z.; Xu, Y.; Lu, T.-H.; Xing, W.; Zhang, M.-L. Acta Chim. Sinica 2007, 65, 1583 (in Chinese). (吕艳卓, 徐岩, 陆天虹, 邢巍, 张密林, 化学学报, 2007,65, 1583.)

14 Huang, S.; Ganesan, P.; Park, S.; Popov, B. N. J. Am. Chem. Soc. 2009, 131, 13898.  

15 Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. J. Power Sources 2009, 194, 281.  

16 Wang, X.; Xia, Y. Electrochim. Acta 2010, 55, 851.  

17 Usseglio, S.; Damin, A.; Scarano, D.; Adriano Zecchina, S. B.; Lamberti, C. J. Am. Chem. Soc. 2007, 129, 2822.  

18 Mohammadi, M. R.; Ordikhani, F.; Fray, D. J.; Khomamizadeh, F. Particuology 2011, 9, 161.  

19 Liu, C.-P.; Yang, H.; Xing, W.; Lu, T.-H. Chem. J. Chin. Univ. 2002, 23, 1367 (in Chinese). (刘长鹏, 杨辉, 邢巍, 陆天虹, 高等学校化学学报, 2002,23, 1367.)

20 Hu, F.-P.; Shen, P.-K. Chin. J. Catal. 2007, 28, 80 (in Chinese). (胡风平, 沈培康, 催化学报, 2007, 28, 80.)

21 Xu, W.; Gao, Y.; Lu, T.; Tang, Y.; Wu, B. Catal. Lett.2009, 130, 312.  

22 Zhang, J.; Yan, S. J. Petrochem. Univ. 2011, 24, 6 (in Chinese). (张静, 阎松, 石油化工高等学校学报, 2011, 24, 6.)

23 Tang, Y.; Zhou, Y.; Wang, X.; Bao, J.; Lu, L.; Lu, T. Chem. Res. Chin. Univ. 2009, 25, 239.

24 Antolinia, E.; Cardellinib, F. J. Alloys Compd. 2001, 315,118.  

25 Xu, J.; Zhao, T.; Liang, Z. J. Power Sources 2008, 185, 857.  

26 Qiu, J.; Zhang, S.; Zhao, H. Sens. Actuators B-Chem. 2011,160, 875.  

文章导航

/