研究论文

理论研究丁羟粘合剂化学键解离及其对力学性能的影响

  • 武文明 ,
  • 张炜 ,
  • 陈敏伯 ,
  • 强洪夫 ,
  • 史良伟
展开
  • a 西安高科技研究所 西安 710025;
    b 国防科技大学航天与材料工程学院 长沙 410073;
    c 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2012-02-06

  修回日期: 2012-04-18

  网络出版日期: 2012-04-20

基金资助

973 (No. 61338)资助项目

Theoretical Investigation of the Bond Dissociation of Hydroxyl Terminated Polybutadiene Binder and Effect on Mechanical Properties

  • Wu Wen-Ming ,
  • Zhang Wei ,
  • Chen Min-B Qiang Hong-Fu ,
  • Shi Liang-Wei
Expand
  • a Xi'an Institute of High Technology and Science, Xi'an 710025;
    b College of Aeronautic and Material Engineering, National University of Defence Technology, Changsha 410073;
    c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2012-02-06

  Revised date: 2012-04-18

  Online published: 2012-04-20

Supported by

Project supported by the National 973 Foundation of China (No. 61338).

摘要

端羟基聚丁烯(HTPB)是推进剂中的常用的粘合剂,老化是其贮存和使用中的重要问题。通过量子化学计算HTPB 与甲基二异腈酸酯(TDI)形成的网络模型简化结构中化学键的均裂解离能(BDE),分析了键能与老化分解的关系。键能计算结果证明可靠且可用于比较分析。与CH2 基团相连的C-O 键的BDE值最小,推测该键最弱并且在热老化过程会发生断裂分解,降解产物主要是CO2。HTPB 中的烯丙基伯羟基与TDI 形成的聚氨酯中α-C-H 属于最弱的X-H(X=C, N)键,推测其容易受到自由基的进攻发生氢转移反应。对容易断裂分解的C-O 键,提出了可能的老化机理。计算的C-O 键断裂活化能与其解离能近似相等,热老化过程中断键生成自由基并通过无势垒过程释放出CO2。整个过程的热老化半衰期是温度的指数衰减函数,表明随着温度的提高HTPB-TDI 聚氨酯老化加速。热力学计算证明老化形成的氨基自由基和烷基自由基能够重新结合。采用分子动力学动态分析方法,分析了HTPB-TDI 聚氨酯网络老化前后的结构变化及其对弹性力性质的影响,发现释放CO2 的过程伴随着体系密度降低。对假定的CO2 扩散聚集以及CO2 从体系中扩散消失的模型进行了模拟,发现拉伸模量和剪切模量在这两种情形下会增加。

本文引用格式

武文明 , 张炜 , 陈敏伯 , 强洪夫 , 史良伟 . 理论研究丁羟粘合剂化学键解离及其对力学性能的影响[J]. 化学学报, 2012 , 70(10) : 1145 -1152 . DOI: 10.6023/A1202061

Abstract

HTPB-based adhesive network is usually used in cured solid propellants, in which the crucial issue involved in the storage and use is aging problem. The quantum chemistry calculation was used to analyze the relationship between homolytic bond dissociation energy of two HTPB-TDI binder models and bond decomposition caused by aging. The computational results were proved to be reliable and suitable for comparative analysis. The BDE values of C-O bonds connected with CH2 group were calculated to be minima, suggesting that they are the weakest bonds resulting in decomposition during thermal aging. The main degradation product is CO2. In the binder formed by the reaction of allylic primary hydroxyl of HTPB and TDI, the α-C-H is the weakest X-H (X=C, N) bond, suggesting that it is vulnerable to free radical attack accompanying the hydrogen transfer. The possible mechanism of aging for the easy-cleavage C-O bonds was proposed. The calculated activation energies of C-O bonds cleavage are approximately equal to the corresponding BDE values, indicating that the formation of radicals accompanies a barrier-free release of CO2 during thermal aging. The half-life time of such aging process was described by an exponential decay function of temperature. The aging of HTPB-TDI binder accelerates with increasing temperature. The radical recombination reactions of decomposed amino radicals and alkyl radicals are supported by thermodynamic data calculated. Molecular dynamic simulations were used to analyze the variation in the network structures and effect on mechanical properteis of HTPB-TDI binder models before and after aging. It is found that the density of the system decreases with release and diffusion of CO2, and the corresponding tensile modulus and shear modulus increase with aging.

参考文献

1 Ulas, A.; Kuo, K. K. Combust, Sci. Tech. 1997, 127. 319.
2 Hocaoglu, ö.; özbelge, T.; Pekel, F.; özkar, S. J. Appl. Polym. Sci. 2001, 79, 959.  
3 Bunyan, P.; Cunliffe, A. V.; Davis, A.; Kirby, F. A. Polym. Degrad. Stab. 1993, 40, 239.  
4 Pesce-Rodriguez, R. A.; Fifer, R. A. Propellants, Explos., Pyrotech. 1996, 21, 337.  
5 Judge, M. D. Propellants, Explos., Pyrotech. 2003, 28, 114.  
6 Energetic Materials. Edited by Teipel, U. Wiley-VCH: Weinheim, 2005, pp 490.
7 Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion; Wiley-VCH: Weinheim,2002.  
8 Pesce-Rodriguez, R. A.; Miser, C. S.; McNesby, K. L.; Fifer, R. A.; Kessel, S.; Strauss, B. D. Appl. Spectrosc.1992, 46, 1143.  
9 de la Fuente, J. L. Polym. Degrad. Stab. 2009, 94, 664.  
10 de la Fuente, J. L.; Rodríguez, O. J. Appl. Polym. Sci. 2003, 87, 2397. and references therein.  
11 Harris, D. J.; Assink, R. A.; Celina M. Macromolecules 2001, 34, 6695.  
12 Yang, G.; Zhao, Y.; Zhang, W.; Wang, C.; Zhu, H. Chin. J. Solid Rocket Tech. 2006, 29, 283 (in Chinese). (杨根, 赵永俊, 张炜, 王春华, 朱慧. 固体火箭技术, 2006, 29, 283.)
13 Zhang X.; Zhang, W.; Lu, W.; Wang, C. Chin. J. Energ. Mater. 2009, 17, 269 (in Chinese). (张兴高, 张炜, 芦伟, 王春华. 含能材料, 2009, 17, 269.)
14 Vilar, W.; Akcelrud, L.; Polym. Bull. 1995, 35, 635.  
15 Bandgar, B. m.; Sharma, K. C.; Mukundan, T.; Krishnamurthy, V. N. J. Appl. Polym. Sci. 2003, 89, 1331.  
16 Sekkar, V.; Gopalakrishnan, S.; Ambika Devi, K. Eur. Polym. J. 2003, 39, 1281.
17 Shi, L.-W.; Wu, W.-M.; Qiang, H.-F.; Chen, M.-B. ACTA CHIMICA SINICA 2008, 66, 2579 (in Chinese). (史良伟, 武文明, 强洪夫, 陈敏伯, 化学学报, 2008, 66, 1043.)
18 Dorofeyeva, I. B.; Tarakanov, O. G. Polymer Sci. U.S.S.R. 1985, 27, 692.
19 Bordwell, F. H.; Zhang, X. -M . Acc. Chem. Res. 1993, 26, 510.  
20 Laarhoven, L. J. J.; Mulder, P.; W ayner, D. D. M. Acc. Chem. Res. 1999, 32, 342.  
21 Götz, J.; Eisenreich, N.; Geiβler, A.; Geiβler, E. Propellents, Explos. Pyrotech. 2002, 27, 179.  
22 Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. J. Phys. Chem. A 2001, 105, 6750.  
23 Song, K. S.; Cheng, Y. H.; Fu, Y.; Liu, L.; Li, X. S.; Guo, Q. X. J. Phys. Chem. A 2002, 106, 6651.  
24 Fu, Y.; Dong, X.-Y.; Wang, Y.-M.; Liu, L.; Guo, Q.-X. Chin. J. Chem. 2005, 23, 474.
25 Fang, M.; Li, Z.; Fu, Y. Chin. J. Chem. 2008, 26, 1122.
26 Ono, K.; Shimada, H.; Nishimura, T.; Yamashita, S.; Okamoto, H.; Minoura, Y. J. Appl. Polym. Sci. 1977, 21,3223.  
27 Grythe, K. F.; Hansen, F. K.; Walderhaug, H. J. Phys. Chem. B 2004, 108, 12404.  
28 Luo, Y.-R. Comprehensive handbook of chemical Bond Energies; CRC Press: Boca Raton, FL, 2007.  
29 Feng, Y.; Huang, H.; Liu, L.; Guo, Q.-X. Phys. Chem. Chem. Phys., 2003, 5, 685.
30 Shafagh, I.; Hughes, K. J.; Pourkashanian, M. J. Energy Resour. Tech. 2011, 133, 011201-1.  
31 Schwartz, W. R.; McEnally, C. S.; Pfefferle, L. D. J. Phys. Chem. 2006, 110, 6643.
32 El-Nahas, A. M.; Navarro, M. V.; Simmie, J. M.; Bozzelli, J. W.; Curran, H. J.; Dooley, S.; Metcalfe, W. J. Phys. Chem. A 2007, 111, 3727.  
33 DiLabio, G. A.; Pratt, D. A.; LoFaro, A. D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653.  
34 Chandra, A. K.; Uchimaru, T. Chem. Phys. Lett. 2001, 334, 200.  
35 Berry, R. J.; Wilson, A. L.; Schwartz, M. J. Mol. Struct. (Theochem) 2000, 496, 121.  
36 Agapito, F.; Nunes, P. M.; Cabral, B. J. C.; Borges dos Santos, R. M.; Martinho Simoes, J. A. J. Org. Chem.2007, 72, 8770.  
37 Kordomenos, P. I.; Kresta, J. E.; Frisch, K. C. Macromolecules, 1987, 20, 2077.  
38 Javni, I.; Petrovi?, Z. S.; Guo, A.; Fuller, R. J. Appl. Polym. Sci. 2000, 77, 1723.  
39 Pauler, D. K.; Henson, N. J.; Kress, J. D. Phys. Chem. Chem. Phys. 2007, 9, 5121.
40 Sung, C. S. P.; Schneider, N. S. Macromolecules, 1977, 10, 452.  
41 Sekkar, V.; Bhagawan, S. S.; Prabhakaran, N.; Rama Rao, M.; Ninan, K. N. Polymer, 2000, 41, 6773.  
42 Sun, H. J. Phys. Chem. B 1998, 102, 7338.  
43 Sarkar, S.; Adhikari, B. Eur. Polym. J. 2001, 37, 1391.
44 Dilsiz, N.; ünver, A. J. Appl. Polym. Sci. 2006, 101, 2538.  
文章导航

/