研究论文

受限空间内聚苯乙烯微粒的制备

  • 王晓蜂 ,
  • 袁荞龙
展开
  • 华东理工大学材料科学与工程学院 上海市先进聚合物材料重点实验室 上海 200237

收稿日期: 2011-12-02

  修回日期: 2012-02-21

  网络出版日期: 2012-05-18

基金资助

上海市重点学科(No. B502)和上海市重点实验室(No. 08DZ2230500)资助项目.

Preparation of Polystyrene Nanospheres in Confined Space

  • Wang Xiaofeng ,
  • Yuan Qiaolong
Expand
  • Key laboratory of Shanghai Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237

Received date: 2011-12-02

  Revised date: 2012-02-21

  Online published: 2012-05-18

Supported by

Project supported by Shanghai Leading Academic Discipline Project (No. B502) and Shanghai Key Laboratory Project (No. 08DZ2230500).

摘要

以(N,N-二甲氨基-4-吡啶)五氰合铁(II)封端的聚氧丙烯聚氧乙烯共聚物(EPE-Fe)与苯乙烯在水中自组装形成纳米体系(EPE-Fe-St), 在纳米尺度受限空间内进行了苯乙烯自由基聚合, 制备了聚苯乙烯微球(EPE-Fe-PS). 用Fe3+对自组装体系的纳米球壳进行固化后形成Fe-EPE-Fe-St 体系, 聚合后也制备了聚苯乙烯微球(Fe-EPE-Fe-PS). 研究结果表明,制备了粒径为60~200 nm 的不同粒径单分散聚苯乙烯微球, 聚合温度对纳米Fe-EPE-Fe-St 体系粒径影响较小, 而对EPE-Fe-St 体系较大. 在受限空间内苯乙烯的自由基聚合可得到数均分子量超过70 万的聚苯乙烯; 自组装体系中引发剂量增多使聚苯乙烯分子量下降, 聚合温度上升也使分子量下降, 而增加自组装的EPE-Fe 用量可增加聚苯乙烯的分子量. 两种受限条件下的聚苯乙烯微球的玻璃化转变温度(Tg)在90~135 ℃之间, 纳米反应器壳层的硬化提高了聚苯乙烯微球的Tg.

本文引用格式

王晓蜂 , 袁荞龙 . 受限空间内聚苯乙烯微粒的制备[J]. 化学学报, 2012 , 70(9) : 1047 -1054 . DOI: 10.6023/A1112021

Abstract

The poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) terminated with pentacyano(4-(dimethylamino)-pyridine) ferrate (EPE-Fe) complex surfactant was synthesized and was used to be self-assembled with styrene (St) in water to form a nano-reactor (EPE-Fe-St). The free radical polymerization of styrene occurred in the confined space in nanosize. And the polystyrene nanospheres (EPE-Fe-PS) were prepared in the nano-reactor. Furthermore, ferric ion was used to cure the shell of the EPE-Fe-St to form a hardened nano-reactor (Fe-EPE-Fe-St). The styrene polymerization was also arisen in the nano-reactor to form polystyrene nanospheres (Fe-EPE-Fe-PS) with a hardened shell. The results of molecular weight and morphology of polystyrene nanospheres show that the various size of monodispersed polystyrene nanospheres in 60~200 nm have been obtained in the confined nanospace. The effect of polymerization temperature on the size of self-assembled EPE-Fe-St is remarkable, and on the size of the Fe-EPE-Fe-St is slight. The higher molecular weight of the polystyrene has achieved more than 700000 in the confined space. In the self-assembled nano-reactor, the molecular weight of PS decreases with increase of initiator content in St solution and enhancement of polymerization temperature, and increases with augment of EPE-Fe content in water. The glass transition temperature (Tg) of the polystyrene nanospheres prepared in two kinds of the confined space are in the range of 90~135 ℃. The Tg of polystyrene nanosphere is enhanced obviously after hardening the shell of nano-reactor whether the hardening shell arises before or after the polymerization.

参考文献

1 Fendler, J. H. Membrane Mimetic Chemistry, Wiley-Inter-science, New York, 1982.

2 Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 37, 247.  

3 Fendler, J. H.; Fendler, E. J. Catalysis in Micellar and Macromolecular Systems, Academic Press, London, 1975.

4 Vriezema, D. M.; Aragonès, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445.  

5 Rabion, A.; Buchanan, R. M.; Fish, R. H. J. Mol. Catal. A: Chem. 1997, 116, 43.  

6 Fuji, K.; Morlmote, T.; Kakiuchi, K. Angew. Chem., Int. Ed. Engl. 2003, 42, 2409.  

7 Benjamin, M.; Rossbach, K. L.; Weberskirch, R. Angew. Chem., Int. Ed. Engl. 2006, 45, 1309.  

8 Liang, G.; Xu, J. Wang, X. J. Am. Chem. Soc. 2009, 131,5378.  

9 Bouilhac, C.; Cloutet, E.; Taton, D,; Deffieux, A. ; Borsali, R.; Cramail, H. J. Polym. Sci., Part A: Polym. Chem. 2009,47, 197.  

10 John, U.; Preben, M. Polym. Int. 1993, 30, 157.  

11 Chen, S.-L.; Dong, P.; Yuan, G.-M. J. Wuhan Univ. Technol.2007, 29, 96 (in Chinese). (陈胜利, 董鹏, 袁桂梅, 武汉理工大学学报, 2007, 29,96.)

12 Huang, L.-Y.; Zhang, Y.; Liu, Z.-P.; Niu, J.-F. J. Beijing Normal Univ. 2006, (3), 177 (in Chinese). (黄俐研, 张艳, 刘正平, 牛静芳, 北京师范大学学报(自 然科学版), 2006, (3), 177.)  

13 Zhou, X.-Y.; Zhang, G.-H. Plastics 2008, 37, 37 (in Chinese). (周晓英, 张光华, 塑料, 2008, 37, 37.)

14 Song, J. H.; Kretzschmar, I. ACS Appl. Mater. Interfaces2009, 1, 1747.  

15 Budijono, S. J.; Russ, B.; Saad, W.; Adamson, D. H.; Prudhomme, R. K. Colloids Surf. A: Physicochem. Eng. Aspects2010, 360, 105.  

16 Mallik, A. K.; Sawada, T.; Takafuji, M.; Ihara, M. Anal. Chem. 2010, 82, 3320.  

17 Du, X.; Liu, X.-M.; Zheng, Y.; He, J.-H. Acta Chim. Sinica2009, 67, 435 (in Chinese). (杜鑫, 刘湘梅, 郑奕, 贺军辉, 化学学报, 2009, 67, 435.)

18 Deng, W.; Chen, G.; Jia, L.; Wang, M.; Gong, L.; Kan, C. Acta Chim. Sinica 2010, 68, 2000 (in Chinese). (邓伟, 陈国, 贾连昆, 王满意, 宫理想, 阚成友, 化学学 报, 2010, 68, 2000.)

19 McIntyre, D.; Fetters, L. J.; Slagowski, E. P. Science 1972,176, 1041.  

20 Mueller, L.; Jakubowski, W.; Matyjaszewski, K.; Pietrasik, J.; Kwiatkowski, P.; Chaladaj, W.; Jurczak, J. Eur. Polym. J.2011, 47, 730.

21 Kwiatkowski, P.; Jurczak, J.; Pietrasik, J.; Jakubowski, W.; Mueller, L.; Matyjaszewski, K. Macromolecules 2008, 41,1067.  

22 Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Pure Appl. Chem. 2000, 72, 1207.  

23 Manabe, K.; Iimura, S.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2002, 123, 10101.
文章导航

/