研究论文

OsO+氧化活化氢分子气相反应机理的密度泛函理论计算

展开
  • 有机功能分子合成与应用教育部重点实验室 湖北大学化学化工学院 武汉 430062

收稿日期: 2011-12-30

  修回日期: 2012-05-04

  网络出版日期: 2012-05-10

基金资助

固体表面物理化学国家重点实验室(厦门大学)开放基金资助项目.

Density functional investigation on the Reaction Mechanisms of Oxidative Activation of Dihydrogen by Osmium Oxide Cation in Gas Phase

Expand
  • The MOE Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

Received date: 2011-12-30

  Revised date: 2012-05-04

  Online published: 2012-05-10

Supported by

This project was supported by the State Key Laboratory of Physical Chemistry of Solid Surfaces at Xiamen University.

摘要

为了探寻OsO+与H2 气相反应的机理,本文用密度泛函理论方法UB3LYP,全优化了该反应的加成(氧化加成和[2+2]环加成)-消除、氢抽提-反弹,以及氧端插入等四种可能路径中所有可能的反应物、中间体、过渡态和产物在六重态、四重态和二重态等三个自旋态下的几何结构,计算了各种机理反应的势能面。结果表明,标题反应为自旋禁阻反应,反应起始自四重态,最终产物为六重态基态,整个反应放热21.0 kJ·mol-1。因反应络合物相对于入口通道有太正Gibbs 函数,氧端插入机理是高能的过程。其他三种机理都具有多(或二)态反应性(MSR 或TSR)。其中,两种加成-消除机理的最低能量路径都可能经由四重态-二重态-四重态-六重态的三次自旋翻转,抽提-反弹机理的最低能量路径可能经历由四重态-六重态的自旋翻转。抽提-反弹机理由势能面一路攀升的吸热氢抽提过程和几乎无能垒的强放热的反弹过程组成,所以按该机理反应在常温常压下难以发生。两种加成-消去机理的决速步(第二个H 的迁移步)相同,虽然其位垒稍高,为156.9 kJ·mol-1,但与其进程中前面的强放热步骤耦合,常温常压下该反应是可以发生的。其中,协同环加成步的位垒仅28.7 kJ·mol-1,比第一个H 的还原消去步的位垒低113.7 kJ·mol-1,所以竞争的结果是,常温常压下[2+2]环加成-消去机理比氧化加成-消去机理在动力学上更有利。

本文引用格式

刘琼, 汪佩, 张干兵 . OsO+氧化活化氢分子气相反应机理的密度泛函理论计算[J]. 化学学报, 2012 , 70(12) : 1337 -1346 . DOI: 10.6023/A1112302

Abstract

Density functional calculations with UB3LYP functional and an extended ECP basis set are employed to Calculate the geometries and energies for all possible reactants, intermediates, transition states and products on sextet, quartet and doublet surfaces in four pathways of addition (oxidative addition and [2+2]cycloaddition)-elimination, abstraction-rebound and oxene-insertion for investigating the mechanisms of oxidative activation of dihydrogen by osmium oxide cation. From the results calculated, the titled reaction is spin-forbidden, which starts on the quartet surface and ends on sextet surface, the overall reaction is exothermic by 21.0 kJ·mol-1. Oxene-insertion process is unfavorable thermodynamically due to more positive Gibbs free energy for the reactant complexes. The other three mechanisms proposed exhibit multiple-state-reactivity (MSR) or two-state-reactivity (TSR). Individually the surfaces in three spin states for the two addition-elimination pathways may cross over three times, while the sextet and quartet surfaces for abstraction-rebound may cross once, respectively. The abstraction-rebound mechanism starts on the H-abstraction process with uphill potential surfaces and high endothermicity, followed by a barrierless and highly exothermic rebound of H atom, thus it cannot take place at normal temperature. While the two addition-elimination processes have the same rate-determining step, where each barrier is about 156.9 kJ·mol-1,which is a little higher than that for the usual reactions in liquid, however it is possible to take place due to coupling with the highly exothermic steps before. Furthermore, the concerted [2+2] cycloaddition step has a lower barrier of only 28.7 kJ·mol-1, which is 113.7 kJ·mol-1 lower than that for the step of the reductive elimination of the first hydride in oxidative addition-elimination process. Thus, [2+2] cycloaddition process is more favorable than oxidative addition process kinetically.

参考文献

1 (a) Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley, Chichester, UK, 2001. (b) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007.

2 Zhao, J.-Q. Homogeneous Complex Catalysis—Activation of Small Molecules, Chemical Industrial Press, Beijing, 2011 (in Chinese). (赵继全, 均相络合催化: 小分子的活化, 化学工业出版社, 北京, 2011.)

3 Kubas, G. J. Chem. Rev. 2007, 107, 4152.

4 Roithová, J.; Schröder, D. Chem. Rev. 2010, 110, 1170.

5 Schröder, D.; Schwarz, H. Angew Chem. Int. Ed. Engl. 1995, 34, 1973.

6 Bohme, D. K.; Schwarz, H. Angew. Chem. Int. Ed. 2005, 44, 2336.

7 Schröder, D.; Schwarz, H. PNAS 2008, 105, 18114.

8 Kappes, M. M.; Staley, R. H. J. Phys. Chem. 1981, 85, 942.

9 Schröder, D.; Fiedler, A.; Ryan, M. F.; Schwarz, H. J. Phys. Chem.1994, 98, 68.

10 Clemmer, D. E.; Chen, Y. M.; Khan, F. A.; Armentrout, P. B. J. Phys. Chem. 1994, 98, 6522.

11 Baranov, V. I.; Javahery, G.; Hopkinson, A. C.; Bohme, D. K. J. Am. Chem. Soc. 1995, 117, 12801.

12 Schröder, D.; Schwarz, H.; Clemmer, D. E.; Chen, Y. M.; Armentrout, P. B.; Baranov, V. I.; Böhme, D. K. Int. J. Mass Spectrom. and Ion Processes 1997, 161, 175.

13 Ryan, M. F.; Fiedler, A.; Schröder, D.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 2033.

14 Ryan, M. F.; Fiedler, A.; Schröder, D.; Schwarz, H. Organometallics 1994, 13, 4072.

15 Kang, H.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 5663.

16 Fiedler, A.; Kretzschmar, H.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1996, 118, 9941.

17 Chen, X.-X.; Wang, Y.-C.; Geng, Z.-Y.; Gao, L.-G.; Fang, R.; Zhang, X.-H. Acta Phys.-Chim. Sin. 2006, 22, 59 (in Chinese). (陈晓霞, 王永成, 耿志远, 高立国, 方冉, 张兴辉, 物理化学学报, 2006, 22, 59.)

18 Fiedler, A.; Schröder, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 1994, 116, 10734.

19 Danovich, D.; Shaik, S. J. Am. Chem. Soc. 1997, 119, 1773.

20 Filatov, M.; Shaik, S. J. Phys. Chem. A 1998, 102, 3835.

21 Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989, 111, 75.

22 Blagojevic, V.; Bozovic, A.; Orlova, G.; Bohme, D. K. J. Phys. Chem. A 2008, 112, 10141.

23 Dai, G.-L.; Gao, L.-G.; Wang, Y.-C.; Fan, K.-N. Acta Chim. Sinica 2007, 65, 509 (in Chinese). (戴国梁, 高立国, 王永成, 范康年, 化学学报, 2007, 65, 509.)

24 (a) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98,11623. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

25 (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

26 Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359.

27 Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.

28 Zhang, G.-B.; Li, S.-H.; Jiang, Y.-S. Organometallics 2003, 22(19), 3820.

29 Zhang, G.-B.; Li, S.-H.; Jiang, Y.-S. Organometallics 2004, 23(15), 3656.

30 Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.

31 Dillard, J. G.; Kiser, R. W. J. Phys. Chem. 1965, 69, 3893.
文章导航

/