研究论文

电化学阻抗谱法研究铈改性TiO2 纳米管阵列光电极裂解水产氢动力学

  • 张胜寒 ,
  • 梁可心 ,
  • 檀玉
展开
  • 华北电力大学环境科学与工程学院 保定 071003

收稿日期: 2011-09-19

  修回日期: 2011-12-26

  网络出版日期: 2012-02-06

基金资助

中央高校基本科研业务费(No. 11QX79)资助项目.

Dynamics Study on the Cerium and Oxidative Cerium Modified TiO2 Nanotube Arrays for Hydrogen Production by Water Splitting Using Electrochemical Impedance Spectrum

  • Zhang Shenghan ,
  • Liang Kexin ,
  • Tan Yu
Expand
  • School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003

Received date: 2011-09-19

  Revised date: 2011-12-26

  Online published: 2012-02-06

Supported by

The project was supported by the Fundamental Research Funds for the Central Universities (No. 11QX79)

摘要

通过阳极氧化法在纯钛板上制备TiO2 纳米管阵列电极. 在光电化学电解池阳极中加入供电子物质乙二醇, 显著减小了TiO2 纳米管的电荷传递阻抗, 促进了光电催化裂解水产氢反应. 采用阴极电沉积和阳极氧化法制备了单质铈和氧化铈共同改性的TiO2 纳米管阵列半导体光阳极, 其平带电位向电负方向移动. 采用电化学阻抗谱法(EIS)对改性后TiO2 纳米管阵列在光电催化裂解水产氢中的电子传输性能以及界面性质进行了表征, 确定了各阻抗弧对应的电极过程. 采用合理的等效电路模型计算了电极的电子传输动力学参数. 结果表明, 经铈改性后的TiO2 纳米管阵列膜电阻明显减小, 有利于氢气的产生. 探讨了单质铈与氧化铈促进TiO2 纳米管阵列电荷传输的作用机理.

本文引用格式

张胜寒 , 梁可心 , 檀玉 . 电化学阻抗谱法研究铈改性TiO2 纳米管阵列光电极裂解水产氢动力学[J]. 化学学报, 2012 , 70(9) : 1109 -1116 . DOI: 10.6023/A1109195

Abstract

TiO2 nanotube arrays photoelectrodes were prepared by anode oxidation on pure Ti sheet. The donor material glycol (C2H6O2) added in the anode electrolyte significantly reduced the charge transfer impedance of TiO2 nanotubes to promote the photocatalytic water splitting for hydrogen production. TiO2 nanotube arrays electrodes were modified by cerium and oxidative cerium with electrochemical deposition and anodic oxidation. The flat band potential moves to the negative potential direction after modification. Electrochemical impedance spectrum (EIS) measurement was used to investigate the electron transfer characteristic in photoelectrodes and the interface characteristic in the photoelectrochemical cell (PEC) for hydrogen production. Arcs of EIS and corresponding electrode processes were discussed. Dynamic parameters of the electrodes were calculated by reasonable electrical equivalent circuit fitting. The results indicate that TiO2 nanotube arrays electrode modified by cerium and oxidative cerium could largely decrease the electron transfer resistance which contributes to hydrogen production. The mechanism of the cerium and oxidative cerium acting on TiO2 nanotube arrays to promote charge transfer is discussed.

参考文献

1 Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. J. Mater. Chem. 2008, 18, 2298.  

2 Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27, 991.  

3 Fujishima, A.; Honda, K. Nature 1972, 238, 37.  

4 Huo, Y. N.; Zhu, J.; Li, J. X.; Li, G. S.; Li, H. X. J. Mol. Catal. A: Chem. 2007, 278(1-2), 237.  

5 Sun, L.; Li, J.; Wang, C. L.; Li, S. F.; Lin, C. J. Sol. Energy Mater. Sol. Cells 2009, 93, 1875.  

6 Jia, F. Z.; Yao, Z. P.; Jiang, Z. H.; Li, C. X. Catal. Commun.2011, 12, 497.  

7 Sakthivel, S.; Shankar, M. V.; Palanichamy, M. Water Res.2004, 38, 3001.  

8 Wan, Z. Q.; Zheng, S. N.; Jia, C. Y.; Yan, W. Acta Chim. Sinica 2009, 67(5), 403 (in Chinese). (万中全, 郑树楠, 贾春阳, 延卫, 化学学报, 2009, 67(5),403.)  

9 Wang, C. L.; Sun, L.; Yun, H.; Li, J.; Lai, Y. K.; Lin, C. J. Nanotechnology 2009, 20, 295601.  

10 Li, J.; Kong, F. T.; Zhang, C. N.; Liu, W. Q.; Dai, S. Y. Acta Chim. Sinica 2010, 68(14), 1357 (in Chinese). (李洁, 孔凡太, 张昌能, 刘伟庆, 戴松元, 化学学报,2010, 68(14), 1357.)

11 Fang, J.; Bi, X. Z.; Si, D. J.; Jiang, Z. Q.; Huang, W. X. Appl. Surf. Sci. 2007, 253, 8952.  

12 Silva, A. M. T.; Silva, C. G.; Drazí, G.; Faria, J. L. Catal. Today 2009, 144(1-2), 13.

13 Xie, J. M.; Jiang, D. L.; Chen, M.; Li, D.; Zhu, J. J.; Lu, X. M.; Yan, C. H. Colloids Surf. A: Physicochem. Eng. Aspects2010, 372, 107.  

14 Wang, C.; Ao, Y.; Wang, P.; Hou, J.; Qian, J.; Zhang, S. J. Hazard. Mater. 2010, 178, 517.  

15 Xu, A. W.; Gao, Y.; Liu, H. Q. J. Catal. 2002, 207, 151.  

16 Lopes, T.; Andrade, L.; Ribeiro, H. A.; Mendes, A. Int. J. Hydrogen Energy 2010, 35, 11601.  

17 Andrade, L.; Cruz, R.; Ribeiro, H. A.; Mendes, A. Int. J. Hydrogen Energy 2010, 35, 8876.  

18 Zhang, J. J.; Wu, M.; Qin, Y. T.; Chen, R.; Jiang, Y. H.; Sun, Y. M.; Yang, Z. H. Acta Phys.-Chim. Sin. 2008, 24(1), 79 (in Chinese). (张俊颉, 吴敏, 秦艳涛, 陈蕊, 蒋银花, 孙岳明, 杨朝晖, 物理化学学报, 2008, 24(1), 79.)  

19 Zhang, S. H.; Liang, K. X.; Tan, Y. Acta Phys.-Chim. Sin.2011, 27(11), 2726 (in Chinese). (张胜寒, 梁可心, 檀玉, 物理化学学报, 2011, 27(11),2726.)

20 Gomes, W. P.; Vanmaekelbergh, D. Electrochim. Acta1996, 41, 967.  

21 Zha, Q. X. An Introduction to Dynamics in Electrode Process,1st ed., Science Press, Beijing, 1987, pp. 505~528 (in Chinese). (查全性, 电极过程动力学导论, 第一版, 科学出版社, 北京, 1987, pp. 505~528.)  

22 Leng, W. H.; Zhang, Z.; Cheng, S. A.; Zhang, J. Q.; Cao, C. N. Chin. J. Chem. Phys. 2001, 14, 705 (in Chinese). (冷文华, 张昭, 成少安, 张鉴清, 曹楚南, 化学物理学报, 2001, 14, 705.)

23 Wang, T. H.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Chim. Sinica 2005, 63(9), 797 (in Chinese). (王添辉, 李越湘, 彭绍琴, 吕功煊, 李树本, 化学学报,2005, 63(9), 797.)

24 Nada, A. A.; Barakat, M. H.; Hamed, H. A.; Mohamed, N. R.; Veziroglu, T. N. Int. J. Hydrogen Energy 2005, 30(7),687.

25 Zhang, S. H.; Liang, K. X.; Tan, Y. International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011, IEEEXplore, Nanjing, 2011, pp.6144~6147.  

26 Zou, Y. L.; Li, Y.; Guo, Y.; Liu, X. L.; Cai, H.; Li, J. G. J. Liaoning Norm. Univ. (Nat. Sci. Ed.) 2009, 32, 212 (in Chinese). (邹云玲, 李酽, 郭英, 刘秀林, 才华, 栗建钢, 辽宁师范大学学报(自然科学版), 2009, 32, 212.)

27 Chen, J. T.; Li, X. J.; Yang, Y.; Wang, L. Y.; He, M. X. J. Chin. Rare Earth Soc. 2003, 21 (Spec. Issue), 67 (in Chinese). (陈俊涛, 李新军, 杨莹, 王良焱, 何明兴, 中国稀土学报, 2003, 21(专辑), 67.)

28 Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Environ. Sci. Technol. 2001, 35, 1544.  
文章导航

/