研究论文

空气下无配体钯催化二苯胺和卤代芳烃的C—N偶联

  • 张斌彬 ,
  • 詹丹 ,
  • 张小平 ,
  • 向沁洁 ,
  • 曾庆乐
展开
  • 成都理工大学 材料与化学化工学院 绿色催化合成研究所 成都 610059

收稿日期: 2012-02-12

  网络出版日期: 2012-05-18

基金资助

项目受四川省国际科技合作与交流研究计划项目(No. 2011HH0016)、成都理工大学优秀创新团队培育计划(No. HY0084)和地质灾害防治与地质环境保护国家重点实验室开放基金(No. SKLGP2012K005)资助.

Ligand-free Pd-Catalyzed C—N Coupling of Diphenylamine and Aryl Halides under Air

  • Zhang Binbin ,
  • Zhan Dan ,
  • Zhang Xiaoping ,
  • Xiang Qinjie ,
  • Zeng Qingle
Expand
  • Institute of Green Catalysis and Synthesis, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059

Received date: 2012-02-12

  Online published: 2012-05-18

Supported by

Project supported by the International Sci-tech Cooperation and Exchange Research of Sichuan Province (No. 2011HH0016), Incubation Program for Excellent Innovation Team of Chengdu University of Technology (No. HY0084), Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2012K005).

摘要

研究了空气下无配体Pd(OAc)2在弱碱碳酸钾存在下催化二苯胺和溴代芳烃的C—N偶联合成三苯胺类化合物. 与传统合成方法相比, 该反应可以在无配体存在下在空气和温和的条件下进行, 即, 无需无水无氧操作条件, 操作特别方便. 催化剂用量、碱、溶剂、反应温度、反应时间等因素对反应的影响均做了考察. 优化的反应条件是: 在Pd(OAc)2 (3 mol%)和K2CO3 (1.5 equiv.)存在下, 二苯胺和溴代芳烃在DMSO中在空气下在90 ℃加热24 h. 溴代芳烃上的吸电子基团和二苯胺上的给电子基团有利于该偶联反应的进行, 其中4-硝基三苯胺的产率高达93%.

本文引用格式

张斌彬 , 詹丹 , 张小平 , 向沁洁 , 曾庆乐 . 空气下无配体钯催化二苯胺和卤代芳烃的C—N偶联[J]. 化学学报, 2012 , 70(15) : 1655 -1659 . DOI: 10.6023/A1202122

Abstract

Triphenylamine derivatives are extensively used as a number of organic dyes, drugs, intermediates, dye-sensitized solar cells (DSSCs) and organic electroluminescence materials. It is valuable to discover a new synthetic method of triphenylamines with mild reaction conditions, easy-operation, and cheap starting materials. During our research of C—H bond activation, accidentally we found palladium acetate accomplished the C—N cross coupling of diphenylamine and 4-nitrobromobenzene under air. This discovery meets one of hot research topics of modern organic chemistry, that is, transition-metal-catalyzed reactions which must operate under inert atmosphere in the traditional procedures now can be performed under air. Consequently, ligand-free Pd(OAc)2-catalyzed C—N cross coupling of diphenylamines and aryl halides under air for synthesis of triphenylamines was studied in details. The effect of catalyst loading, base, additives, solvents and reaction time on this transformation was investigated. The optimized conditions were as follows: Pd(OAc)2 (3 mol%), K2CO3 (1.5 equiv.), heated at 90 ℃ in DMSO under air. Electron-withdrawing group of phenyl bromides and electron-donating group of diphenylamine benefit the coupling reaction, and among them, 4-nitrotriphenylamine gave yield up to 93%. Compared with traditional methods, the reactions were conducted under air and mild conditions in absence of ligand, that is, anhydrous and oxygen-free conditions are not required, and operation is extremely easy.

参考文献

[1] Liu, T.; Sun, J.; Li, R.; Tao, X.-C. Chin. J. Org. Chem. 2011, 31, 1799. (刘涛平, 孙杰, 李瑞, 陶晓春, 有机化学, 2011, 31, 1799.)

[2] Chan, H. S. O.; Ng, S. C.; Leong, L. S.; Tan, K. L. Synth. Met. 1995, 68, 199.

[3] Fang, Q.; Xua, B.; Jiang, B.; Fu, H. T.; Zhu, W. Q.; Jiang, X. Y.; Zhang, Z. L. Synth. Met. 2005, 105, 206.

[4] Zhang, L.; Li, B.; Lei, B.; Hong, Z.; Li, W. J. Lumin. 2008, 128, 67.

[5] Sengupta, S. Tetrahedron Lett. 2003, 44, 307.

[6] Zheng, B.; Niu, H.-J.; Bai, X.-Z. Prog. Chem. 2008, 20, 828. (郑冰, 牛海军, 白续铎, 化学进展, 2008, 20, 828.)

[7] Ramu, B.; Swamy, G. N. J. Chem. Pharm. Sci. 2009, 2, 73.

[8] Wu, X.; Davis, A. P.; Lambert, P. C.; Kraig Steffen, L.; Toy, O.; Fry, A. J. Tetrahedron 2009, 65, 2408.

[9] Liu, J. CN 101012171A, 2007. (刘坚, 中国发明专利, CN101012171A, 2007.)

[10] Tao, X.-C.; Yang, X.-H.; Huang, Y.-Z.; Sun, J.; Cai, L.-Z.; Cao, X.-J.; Zhu, Z. CN101538210A, 2009. (陶晓春, 杨兴淮, 黄应钊, 孙杰, 蔡良珍, 曹雄杰, 朱哲, 中国发明专利, CN101538210A, 2009.)

[11] Liu, P.; Li, S.-H.; Li, L.-M.; Wang, X.-Y.; Yin, Y.-Q.; Zhang, Y.-H. Prog. Chem. 2005, 17, 286. (刘蒲, 李三华, 李利民, 王向宇, 殷元琪, 张玉华, 化学进展, 2005, 17, 286.)

[12] Hartwig, J. F. Angew. Chem. Int. Ed. Engl. 1998, 37, 2046.

[13] Beilfeid, A. J.; Brown, G. R.; Fobiser, A. J. Tetrahadron 1999, 55, 11399.

[14] Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.

[15] Zhang, Z.-F.; Zhou, W.-C. Chin. J. Org. Chem. 2002, 22, 685. (张贞发, 周伟澄, 有机化学, 2002, 22, 685.)

[16] Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1348.

[17] Fors, B. P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L. Tetrahedron 2009, 65, 6576.

[18] Stambuli, J. P.; Buehl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346.

[19] Urgaonkar, S.; Nagarajian, M.; Verkand, J. G. Org. Lett. 2003, 5, 815.

[20] Hartwig, J. F.; Kawatsura, M.; Hauck, S. I. J. Am. Chem. Soc. 1999, 64, 5575.

[21] Han, W.; Liu, C.; Jin, Z.-L. Adv. Synth. Catal. 2008, 350, 501.

[22] Liu, C.; Yang, W.-B. Chem. Commun. 2009, 6267.

[23] Wu, N.; Li, X.; Xu, X.; Wang, Y.; Xu, Y.; Chen, X. Lett. Org. Chem. 2010, 7, 11.

[24] Liu, C.; Ni, Q.-J.; Qiu, J.-S. Eur. J. Org. Chem. 2011, (16), 3009.

[25] Tan, J.; Tang, W.; Sun, Y.; Jiang, Z.; Chen, F.; Xu, L.; Fan, Q.; Xiao, J. Tetrahedron 2011, 67, 6206.

[26] Li, H.; Yang, M.; Qi, Y.; Xue, J. Eur. J. Org. Chem. 2011, 14, 2662.

[27] Gholap, A. R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. J. Org. Chem. 2005, 70, 4869.

[28] Zeng, Q.; Liu, H.; Cui, X.; Mi, A.; Jiang, Y.; Li, X.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2002, 13, 115.

[29] Zeng, Q.; Wang, H.; Wang, T.; Cai, Y.; Weng, W.; Zhao, Y. Adv. Synth. Catal. 2005, 347, 1933.

[30] Zeng, Q.-L.; Tang, H.-Y.; Zhang, S.; Liu, J.-C. Chin. J. Chem. 2008, 26, 1435.

[31] Zeng, Q.; Gao, Y.; Dong, J.; Weng, W.; Zhao, Y. Tetrahedron: Asymmetry 2011, 22, 717.
文章导航

/