研究论文

钌镧氧化物涂层在NaCl 溶液中的电化学阻抗谱(EIS)研究

  • 龙萍 ,
  • 李庆芬 ,
  • 许立坤 ,
  • 薛丽莉 ,
  • 宋泓清
展开
  • a 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001;
    b 哈尔滨工程大学机电工程学院 哈尔滨 150001;
    c 中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266071

收稿日期: 2012-01-13

  修回日期: 2012-02-21

  网络出版日期: 2012-05-28

Electrochemical Impedance Spectroscopy (EIS) Study of Ru-La Oxide Coatings in NaCl Solution

  • Long Ping ,
  • Li Qingfen ,
  • Xu Likun ,
  • Xue Lili ,
  • Song Hongqing
Expand
  • a School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001;
    b School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001;
    c State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266071

Received date: 2012-01-13

  Revised date: 2012-02-21

  Online published: 2012-05-28

摘要

测量了钌镧氧化物涂层的电化学阻抗谱(EIS), 结合循环伏安(CV)及扫描电子显微镜形貌分析, 研究了钌镧氧化物涂层阳极在3.5% NaCl 溶液中电化学表面结构及电化学行为. 在非析氯反应区间, 该涂层EIS 数据的最佳拟合等效电路是Rs(RctQdl), 在析氯反应区间, 其等效电路为Rs(RfQf)(RctWQdl). 高频段阻抗行为对应涂层的物理阻抗, 低频段对应涂层与溶液界面的电化学反应阻抗. 实验结果表明, 随着La 浓度增加, 氧化膜及双电层的伪电容增大, 且在La 含量30mol%时达到最大值, 与CV实验结果一致, 证明了加入La 能提高RuO2涂层的电催化活性. 但在析氯反应区间, 涂层氧化膜的导电性在含La 大于30 mol%之后迅速下降, 在低频段产生Warburg 阻抗, 与其表面钝化和特性吸附现象有关,这是导致含La 70 mol%时电催化活性急剧下降的原因.

本文引用格式

龙萍 , 李庆芬 , 许立坤 , 薛丽莉 , 宋泓清 . 钌镧氧化物涂层在NaCl 溶液中的电化学阻抗谱(EIS)研究[J]. 化学学报, 2012 , 70(10) : 1166 -1172 . DOI: 10.6023/A1201131

Abstract

Electrochemical surface structure and electrochemical performance of Ti based Ru-La oxide coatings in 3.5% NaCl solution have been investigated by electrochemical impedance spectroscopy (EIS), together with cyclic voltammetry (CV) and scanning electron microscopy (SEM). The best-fit circuit to EIS data of the coatings in the absence of the chlorine evolution reaction is Rs(RctQdl), and that in the potential range of chlorine evolution reaction is Rs(RfQf)(RctWQdl). The high-frequency region corresponds to the impedance behavior of the coating, and the low-frequency region to that of the interface between outer surface and electrolyte. Results show that the pseudo-capacitances of the oxide film and the double layer increase with increasing La content, reaching a maximum at the nominal La content of 30 mol%. This finding agrees with the CV result, suggesting that the La additive in suitable amount can improve the electrochemical activity of the RuO2 coating. The electric conductivity of the coatings, however, significantly decreases when nominal La content is larger than 30 mol% in the region of the chlorine evolution potential. A character with a Warburg impedance at low-frequency region suggests the relationship to passivation of the coating surface and specific adsorption, resulting in a dramatic decrease of electrocatalytic activity of the coatings at norminal La content of 70 mol%.

参考文献

1 Trasatti, S. Electrochim. Acta 1991, 36, 225.  
2 Morimitsu, M.; Otogawa, R.; Matsunaga, M. Electrochim. Acta 2000, 46, 401.  
3 Kim, K.-W.; Lee, E.-H.; Kim, J.-S.; Shin, K.-H.; Jung, B.-I. Electrochim. Acta 2002, 47, 2525.  
4 Arikawa, T.; Takasu, Y.; Murakami, Y.; Asakura, K.; Iwasawa, Y. J. Phys. Chem. B 1998, 102, 3736.  
5 Fujimura, K.; Matsui, T.; Habazaki, H.; Kawashima, A.; Kumagai, N.; Hashimoto, K. Electrochim. Acta 2000, 45,2297.  
6 Wohlfahrt-Mehrens, M.; Schenk, J.; Wilde, P. M.; Abdelmula, E.; Axmann, P.; Garche, J. J. Power Sources2002, 105, 182.  
7 Vazquez-Gomez, L.; Ferro, S.; De Battisti, A. Appl. Catal. B: Environmental 2006, 67, 34.  
8 Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Electrochem. Commun. 2004, 6, 499.  
9 Liu, S.; Liu, Z.; Wang, Z.; Zhao, S.; Wu, Y. Appl. Catal. A: General 2006, 313, 49.  
10 Kotz, R. Electrochim. Acta 1984, 29, 1607.  
11 Kameyama, K.; Isukada, K.; Yahikozawa, K.; Takasu, Y. J. Electrochem. Soc. 1994, 141, 643.  
12 Long, P.; Xu, L. K.; Li, Q. F.; Tang, Y.; Xin, Y. L. Acta Chim. Sinica 2009, 67, 1325 (in Chinese). (龙萍, 许立坤, 李庆芬, 唐益, 辛永磊, 化学学报, 2009,67, 1325.)
13 Ji, H.; Zhou, D. R.; Wang, L.; Zhou, Y. H. Rare Metal Mater. Eng. 2004, 33, 877 (in Chinese). (纪红, 周德瑞, 王丽, 周育红, 稀有金属材料与工程,2004, 33, 877.)
14 Nowakowski, P.; Villain, S.; Aguir, K.; Guérin, J.; Kopia, A.; Kusinski, J.; Guinneton, F.; Gavarri, J. R. Thin Solid Films 2010, 518, 2801.  
15 Tang, Z.; Lu, G. J. Power Sources 2006, 162, 1067.  
16 Murakami, Y.; Kondo, T.; Shimoda, Y.; Kaji, H.; Yahikozawa, K.; Takasu, Y. J. Alloys Compd. 1996, 239,111.  
17 Murakami, Y.; Kondo, T.; Shimoda, Y.; Kaji, H.; Zhang, X.-G.; Takasu, Y. J. Alloys Compd. 1997, 261, 176.  
18 Murakami, Y.; Nakamura, T.; Zhang, X.-G.; Takasu, Y. J. Alloys Compd. 1997, 259, 196.  
19 Lassali, T. A. F.; Boodts, J. F. C.; Bulhoes, L. O. S. Electrochim. Acta 1999, 44, 4203.  
20 Tilak, B. V.; Chen, C.-P.; Birss, V. I.; Wang, J. Can. J. Chem. 1997, 75, 1773.
21 Lassali, T. A. F.; Boodts, J. F. C.; Trasatti, S. Electrochim. Acta 1994, 39, 1545.  
22 Li, G. Z.; Lu, L. N. Rare Metals Lett. 2006, 25, 31 (in Chinese). (李广忠, 芦丽娜, 稀有金属快报, 2006, 25, 31.)
23 Hu, J. M.; Meng, H. M.; Zhang, J. Q.; Wu, J. X.; Yang, D. J.; Cao, C. N. Acta Metallurgica Sinica 2001, 37, 628 (in Chinese). (胡吉明, 孟惠民, 张鉴清, 吴继勋, 杨德钧, 曹楚南, 金 属学报, 2001, 37, 628.)
24 Pajkossy, T. J. Electroanal. Chem. 1994, 364, 111.  
25 Kerner, Z.; Pajkossy, T. Electrochim. Acta 2000, 46, 207.  
26 Burrows, I. R.; Denton, D. A.; Harrison, J. A. Electrochim. Acta 1978, 23, 493.  
27 Cao, C. N. Principles of Electrochemistry of Corrosion, Chemical Industry Press, Beijing, 2004, pp. 185~187 (in Chinese). (曹楚南, 腐蚀电化学原理, 化学工业出版社, 北京,2004, pp. 185~187.)
28 Hu, J. M.; Meng, H. M.; Zhang, J. Q.; Cao, C. N. Acta Phys.-Chim. Sin. 2002, 18, 14 (in Chinese). (胡吉明, 孟惠民, 张鉴清, 曹楚南, 物理化学学报, 2002,18, 14.)
29 Vallet, C. E. J. Electrochem. Soc. 1991, 138, 1234.  
30 Zhang, A. J.; Birss, V. I.; Vanysek, P. J. Electroanal. Chem.1994, 378, 63.  
31 da Silva, L. A.; Alves, V. A.; da Silva, M. A. P.; Trasatti, S.; Boodts, J. F. C. Electrochim. Acta 1997, 42, 271.  
文章导航

/