研究论文

基于银纳米粒子色度法检测Hg2+

  • 罗金尚 ,
  • 王莹莹 ,
  • 谭克俊
展开
  • 发光与实时分析教育部重点实验室 西南大学化学化工学院 重庆 400715

收稿日期: 2012-06-18

  网络出版日期: 2012-07-24

基金资助

项目受国家自然科学基金(No. 20877063)和重庆市科委重点实验室专项经费资助.

Colorimetric Detection of Mercury(Ⅱ) Based on Silver Nanoparticles

  • Luo Jinshang ,
  • Wang Yingying ,
  • Tan Kejun
Expand
  • Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715

Received date: 2012-06-18

  Online published: 2012-07-24

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn. Project supported by the National Natural Science Foundation of China (No. 20877063) and the Special Fund of Chongqing Key Laboratory (CSTC).

摘要

通过一步法制备了稳定、分散的聚多巴胺包被的银纳米粒子(AgNPs). 基于Hg2+与聚多巴胺的吸附作用使AgNPs 发生聚集, 导致体系吸收信号发生变化, 同时溶液颜色也发生相应改变, 建立了Hg2+的紫外-可见分光光度法及色度法. 线性范围为0.5~5.0 μmol/L, 检出限为50 nmol/L. 表征了紫外-可见光谱、红外光谱及扫描电镜显微成像(SEM), 优化了实验条件, 并探讨了反应机理. 该方法用于实际样品中Hg2+的测定, RSD≤4.4%.

本文引用格式

罗金尚 , 王莹莹 , 谭克俊 . 基于银纳米粒子色度法检测Hg2+[J]. 化学学报, 2012 , 70(18) : 1945 -1949 . DOI: 10.6023/A12060319

Abstract

In this work, the colorimetric detection assay of mercury has been proposed based on silver nanoparticles (AgNPs) aggregation. In basic medium with 1.75 mmol/L NaOH, the stable and monodisperse silver nanoparticles, which coated by polydopamine, was prepared by a one-pot reduction process using dopamine as a reducing agent. The polydopamine adsorption with Hg2+ can induce the aggregation of silver nanoparticles resulting in the decrease of absorption signal of AgNPs at 405 nm and the color change of the solutions. It was found that the decreased absorption signal intensity was proportional to the mercury content in a range of 0.5~5.0 μmol/L. According to this, the ultraviolet-visible absorption spectrum method and colorimetric method for determination of Hg2+ was developed. The limit of detection is 50 nmol/L. In this work, UV-vis absorption spectrum, scanning electron microscope (SEM) and infrared (IR) spectrum were investigated. The mechanism of this reaction was discussed. The IR spectrum of special functional groups approved that polydopamine was formed on the surface of AgNPs. The UV-Vis absorption peak at 405 nm and SEM photos indicated that the stable and monodisperse AgNPs was prepared and the aggregation of AgNPs was occurred after the addition of Hg2+. The tolerance of coexisting foreign substances in system was also studied and the experimental results indicated that the interferences of other common metal ions were small. The experimental condition optimization results show that when the NaOH concentration is 1.75 mmol/L and dopamine concentration is 40 μmol/L, the system has a good response for Hg2+. The proposed method was successfully used to detection of Hg2+ in tap water with a recovery range of 93.0% to 105.5% and RSD≤4.4%. This method show some advantages including low-cost, rapidity, simplicity and selectivity. Moreover, it can achieve a visual sensing of Hg2+.

参考文献

[1] Zhao, Q.; Cao, T. Y.; Li, F. Y.; Li, X. H.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 2077.  

[2] Shi, H. F.; Zhao, Q.; An, Z. F.; Xu, W. J.; Liu, S. J.; Huang, W. Prog. Chem. 2010, 22, 1741. (史慧芳, 赵强, 安众福, 许文娟, 刘淑娟, 黄维, 化学进展, 2010, 22, 1741.)

[3] Liu, Y.; Liang, P.; Guo, L.; Lu, H. B. Acta Chim. Sinica 2005, 63, 312. (刘艳, 梁沛, 郭丽, 卢汉兵, 化学学报, 2005, 63, 312.)

[4] Lü, S. H.; Ye, T.; Jiang, X.; Wang, J, J.; Wei, G. F.; Lü, J. Q. Acta Chim. Sinica 2011, 69, 831. (吕诗言, 叶泰, 姜欣, 王晶晶, 魏国芬, 吕鉴泉, 化学学报, 2011, 69, 831.)

[5] Wen, G. Q.; Li, J. F.; Liang, A. H.; Jiang, Z. L.; He, X. C. Acta Chim. Sinica 2010, 68, 83. (温桂清, 李建福, 梁爱惠, 蒋治良, 何星存, 化学学报, 2010, 68, 83.)

[6] Wang, L.; Li, T.; Du, Y.; Chen, C. G.; Li, B. L.; Zhou, M.; Dong, S. J. Biosens. Bioelectron. 2010, 2622.

[7] Yuan, X.; Yeow, T. J.; Zhang, Q. B.; Lee, J. Y.; Xie, J. P. Nanoscale 2012, 4, 1968.  

[8] Page, L. E.; Zhang, X.; Jawaid, A. M.; Snee, P. T. Chem. Commun. 2011, 47, 7773.  

[9] Slocik, J. M.; Zabinski, J. S.; Phillips, D. M.; Naik, R. R. Small 2008, 5, 548.

[10] Li, L.; Li, B. X.; Qi, Y. Y.; Jin, Y. Anal. Bioanal. Chem. 2009, 393, 2051.  

[11] Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. Anal. Chem. 2010, 82, 6830.  

[12] Huy, G. D.; Zhang, M.; Zuo, P.; Ye, B. C. Analyst 2011, 136, 3289.  

[13] Li, F.; Zhang, J.; Cao, X.; Wang, L.; Li, D.; Song, S.; Ye, B. C.; Fan, C. Analyst 2009, 134, 1355.  

[14] Thaxton, C. S.; Georganopoulou, D. G.; Mirkin, C. A. Clin. Chim. Acta 2006, 363, 120.  

[15] White, K. A.; Rosi, N. L. Nanomedicine 2008, 3, 543.  

[16] Lou, T. T.; Cheng, L.; Zhang, C. R; Kang, Q.; You, H. Y.; Shen, D. Z.; Chen, L. X. Anal. Method 2012, 4, 488.  

[17] Zhang, F. Q.; Zeng, L. Y.; Yang, C.; Xin, J. W.; Wang, H. Y.; Wu, A. G. Analyst 2011, 136, 2825.  

[18] Guo, Y. M.; Wang, Z.; Qu, W. S.; Shao, H. W.; Jiang, X. Y. Biosens. Bioelectron. 2011, 26, 4064.  

[19] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607.  

[20] Tolaymat, T. M.; El Badawy, A. M.; Ash, G.; Scheckel, K. G.; Luxton, T. P.; Makram, S. Sci. Total Environ. 2010, 408, 999.

[21] Wei, H.; Chen, C. G.; Han, B. Y.; Wang, E. K. Anal. Chem. 2008, 80, 7051.  

[22] Kanjanawarut, R.; Su, X. D. Anal. Chem. 2009, 81, 6122.  

[23] Yoosaf, K.; Ipe, B. I.; Suresh, C. H.; Thomas, K. G. J. Phys. Chem. C 2007, 111, 12839.

[24] Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.  

[25] Xu, L. Q.; Yang, W. J.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Macromolecules 2010, 43, 8336.  

[26] Dean, J. A. Analytical Chemistry Handbook, Science Press, Beijing, 1988, Chapter 6. (J. A. 迪安, 分析化学手册, 科学出版社, 北京, 1988, 第六章.)   

[27] Ma, Y. R.; Niu, H. Y.; Zhang, X. L.; Cai, Y. Q. Analyst 2011, 136, 4192.Chen, C. Y. Occupation Health 2004, 20, 49. (陈朝阳, 职业与健康, 2004, 20, 49.)

文章导航

/