核磁共振波谱在分析化学领域应用的新进展
收稿日期: 2012-06-25
网络出版日期: 2012-08-10
基金资助
项目受“重大新药创新”科技重大专项(No. 2010ZX09401-305-07)和国家自然科学基金(No. 21175127)资助.
Recent Progress in the Nuclear Magnetic Resonance Applications in Analytical Chemistry
Received date: 2012-06-25
Online published: 2012-08-10
Supported by
Project supported by the Major Special Project of Scientific and Technological: Major Creation of New Drugs (No. 2010ZX09401-305-07) and the National Natural Science Foundation of China (No. 21175127).
王桂芳 , 马廷灿 , 刘买利 . 核磁共振波谱在分析化学领域应用的新进展[J]. 化学学报, 2012 , 70(19) : 2005 -2011 . DOI: 10.6023/A12060339
Development of new and effective methods for measuring chemical composition, molecular structures, interactions and dynamics is one of the major issues of analytical chemistry. Spectral analysis (spectroscopy, mass spectrometry and nuclear magnetic resonance) is the most commonly used analytical tool to address these issues. Nuclear magnetic resonance is capable to determine structure for small molecules, macromolecules and complicated biological systems, and it is considered as the most powerful tool in analytical chemistry. This paper reviewed recent progress of nuclear magnetic resonance in biological macromolecules system, complex system and the hyphenated method applications in analytical chemistry. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in analytical chemistry field. The detailed application descriptions of nuclear magnetic resonance technology have been summarized from part two to part four. In the second part, we summarized the applications of nuclear magnetic resonance technology in biological macromolecules system, including the main nuclear magnetic resonance technology development in three dimensional protein structural analysis field and its applications; the related methods and applications in the dynamic study of protein complex, the in-cell nuclear magnetic resonance labeling methods development history and its applications, and also the methods of nuclear magnetic resonance technologies in studying the interactions of protein and drugs. In the third part, the qualitative and quantitative analysis of nuclear magnetic resonance technologies in complex systems has been summarized, including the applications in the metabolomics and the applications in the field of food quality and safety. In the fourth part, we briefly introduced the joint applications of magnetic resonance technologies and other separation methods such as chromatography and spectroscopic ways. The conclusions of nuclear magnetic resonance technology applications and the suggestions of future developing directions were stated in the last part.
[1] Williamson, M. P.; Havel, T. F.; Wuthrich, K. J. Mol. Biol. 1985, 182, 295.
[2] Arseniev, A. S.; Wider, G.; Joubert, F. J.; Wuthrich, K. J. Mol. Biol. 1982, 159, 323.
[3] Billeter, M.; Braun, W.; Wuthrich, K. J. Mol. Biol. 1982, 155, 321.
[4] Wagner, G.; Wuthrich, K. J. Mol. Biol. 1982, 155, 347.
[5] Wider, G.; Lee, K. H.; Wuthrich, K. J. Mol. Biol. 1982, 155, 367.
[6] Wuthrich, K. Biochem. Soc. Symp. 1982, 17.
[7] Wuthrich, K. S. Afr. J. Sci. 1982, 78, 381.
[8] Wuthrich, K. Umschau Das Wissenschaftsmagazin 1982, 82, 684.
[9] Wuthrich, K.; Wider, G.; Wagner, G.; Braun, W. J. Mol. Biol. 1982, 155, 311.
[10] Pervushin, K.; Riek, R.; Wider, G.; Wuthrich, K. Proc. Natl. Acad. Sci. 1997, 94, 12366.
[11] Salzmann, M.; Pervushin, K.; Wider, G.; Senn, H.; Wuthrich, K. Proc. Natl. Acad. Sci. 1998, 95, 13585.
[12] Zhu, G.; Yao, X. J. Prog. Nucl. Mag. Res. Sp. 2008, 52, 49.
[13] Riek, R.; Wider, G.; Pervushin, K.; Wuthrich, K. Proc. Natl. Acad. Sci. 1999, 96, 4918.
[14] Takahashi, H.; Nakanishi, T.; Kami, K.; Arata, Y.; Shimada, I. Nat. Struct. Biol. 2000, 7, 220.
[15] Tjandra, N.; Bax, A. Science 1997, 278, 1697.
[16] Tolman, J. R.; Flanagan, J. M.; Kennedy, M. A.; Prestegard, J. H. Proc. Natl. Acad. Sci. 1995, 92, 9279.
[17] Barbieri, R.; Luchinat, C.; Parigi, G. ChemPhysChem 2004, 5, 797.
[18] Bertini, I.; Luchinat, C.; Piccioli, M. In Nuclear Magnetic Resonance of Biological Macromolecules, Pt. B, Vol. 339, Eds.: James, T. L.; Dotsch V.; Schmitz U., Academic Press, San Diego, 2001, p. 314.
[19] Tang, C.; Schwieters, C. D.; Clore, G. M. Nature 2007, 449, 1078.
[20] Berardi, M. J.; Shih, W. M.; Harrison, S. C.; Chou, J. J. Nature 2011, 476, 109.
[21] Tugarinov, V.; Kay, L. E. J. Am. Chem. Soc. 2003, 125, 13868.
[22] Kainosho, M.; Torizawa, T.; Iwashita, Y.; Terauchi, T.; Ono, A. M.; Guntert, P. Nature 2006, 440, 52.
[23] Tugarinov, V.; Choy, W. Y.; Orekhov, V. Y.; Kay, L. E. Proc. Natl. Acad. Sci. 2005, 102, 622.
[24] Goto, N. K.; Gardner, K. H.; Mueller, G. A.; Willis, R. C.; Kay, L. E. J. Biomol. NMR 1999, 13, 369.
[25] Foster, P.; McElroy, A.; Amero, C. D. Biochemistry-US 2007, 46, 331.
[26] Fernandez, C.; Wuthrich, K. FEBS Lett. 2003, 555, 144.
[27] Fiaux, J.; Bertelsen, E. B.; Horwich, A. L.; Wuthrich, K. Nature 2002, 418, 207.
[28] Fernandez, C.; Adeishvili, K.; Wuthrich, K. Proc. Natl. Acad. Sci. 2001, 98, 2358.
[29] Hilty, C.; Fernandez, C.; Wider, G.; Wuthrich, K. J. Biomol. NMR 2002, 23, 289.
[30] Hilty, C.; Wider, G.; Fernandez, C.; Wuthrich, K. J. Biomol. NMR 2003, 27, 377.
[31] Fernandez, C.; Hilty, C.; Wider, G.; Guntert, P.; Wuthrich, K. J. Mol. Biol. 2004, 336, 1211.
[32] Xu, Y. Q.; Lin, Z.; Ho, C.; Yang, D. W. J. Am. Chem. Soc. 2005, 127, 11920.
[33] Xu, Y. Q.; Zheng, Y.; Fan, J. S.; Yang, D. W. Nat. Methods 2006, 3, 931.
[34] Snyder, D. A.; Xu, Y. Q.; Yang, D. W.; Bruschweiler, R. J. Am. Chem. Soc. 2007, 129, 14126.
[35] Feng, W.; Pan, L.; Zhang, M. Sci. Chin. Life Sci. 2011, 54, 101.
[36] Ikura, M.; Bax, A. J. Am. Chem. Soc. 1992, 114, 2433.
[37] Korzhnev, D. M.; Salvatella, X.; Vendruscolo, M.; Di Nardo, A. A.; Davidson, A. R.; Dobson, C. M.; Kay, L. E. Nature 2004, 430, 586.
[38] Sugase, K.; Dyson, H. J.; Wright, P. E. Nature 2007, 447, 1021.
[39] Korzhnev, D. M.; Religa, T. L.; Banachewicz, W.; Fersht, A. R.; Kay, L. E. Science 2010, 329, 1312.
[40] Farber, P.; Darmawan, H.; Sprules, T.; Mittermaier, A. J. Am. Chem. Soc. 2010, 132, 6214.
[41] Zimmerman, S. B.; Trach, S. O. J. Mol. Biol. 1991, 222, 599.
[42] Serber, Z.; Dotsch, V. Biochemistry-US 2001, 40, 14317.
[43] Llinas, M.; Wuthrich, K.; Schwotzer, W.; Philipsborn, W. V. Nature 1975, 257, 817.
[44] Reckel, S.; Hansel, R.; Lohr, F.; Dotsch, V. Prog. Nucl. Mag. Res. Sp. 2007, 51, 91.
[45] Sharaf, N. G.; Barnes, C. O.; Charlton, L. M.; Young, G. B.; Pielak, G. J. J. Magn. Reson. 2010, 202, 140.
[46] Augustus, A. M.; Reardon, P. N.; Spicer, L. D. Proc. Natl. Acad. Sci. 2009, 106, 5065.
[47] Banci, L.; Barbieri, L.; Bertini, I.; Cantini, F.; Luchinat, E. Plos One 2011, 6.
[48] Barnes, C. O.; Monteith, W. B.; Pielak, G. J. Chembiochem 2011, 12, 390.
[49] Bertini, I.; Felli, I. C.; Gonnelli, L.; Kumar, M. V. V.; Pierattelli, R. Angew. Chem. Int. Ed. 2011, 50, 2339.
[50] Li, C. G.; Wang, G. F.; Wang, Y. Q.; Creager-Allen, R.; Lutz, E. A.; Scronce, H.; Slade, K. M.; Ruf, R. A. S.; Mehl, R. A.; Pielak, G. J. J. Am. Chem. Soc. 2010, 132, 321.
[51] Wang, G. F.; Li, C. G.; Pielak, G. J. Protein Sci. 2010, 19, 1686.
[52] Sakakibara, D.; Sasaki, A.; Ikeya, T.; Hamatsu, J.; Hanashima, T.; Mishima, M.; Yoshimasu, M.; Hayashi, N.; Mikawa, T.; Walchli, M.; Smith, B. O.; Shirakawa, M.; Guntert, P.; Ito, Y. Nature 2009, 458, 102.
[53] Inomata, K.; Ohno, A.; Tochio, H.; Isogai, S.; Tenno, T.; Nakase, I.; Takeuchi, T.; Futaki, S.; Ito, Y.; Hiroaki, H.; Shirakawa, M. Nature 2009, 458, 106.
[54] Selenko, P.; Serber, Z.; Gade, B.; Ruderman, J.; Wagner, G. Proc. Natl. Acad. Sci. 2006, 103, 11904.
[55] Bodart, J. F.; Wieruszeski, J. M.; Amniai, L.; Leroy, A.; Landrieu, I.; Rousseau-Lescuyer, A.; Vilain, J. P.; Lippens, G. J. Magn. Reson. 2008, 192, 252.
[56] Smet, C.; Leroy, A.; Sillen, A.; Wieruszeski, J. M.; Landrieu, I.; Lippens, G. Chembiochem 2004, 5, 1639.
[57] Charlton, L. M.; Pielak, G. J. Proc. Natl. Acad. Sci. 2006, 103, 11817.
[58] Crowley, P. B.; Chow, E.; Papkovskaia, T. Chembiochem 2011, 12, 1043.
[59] Wang, Q. H.; Zhuravleva, A.; Gierasch, L. M. Biochemistry-US 2011, 50, 9225.
[60] Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Science 1996, 274, 1531.
[61] Peng, J. W.; Moore, J.; Abdul-Manan, N. Prog. Nucl. Mag. Res. Sp. 2004, 44, 225.
[62] Dalvit, C.; Pevarello, P.; Tato, M.; Veronesi, M.; Vulpetti, A.; Sundstrom, M. J. Biomol. NMR 2000, 18, 65.
[63] Mayer, M.; Meyer, B. Angew. Chem. Int. Ed. 1999, 38, 1784.
[64] Ji, Z. S.; Yao, Z. X.; Liu, M. L. Anal. Biochem. 2009, 385, 380.
[65] Benie, A. J.; Moser, R.; Bauml, E.; Blaas, D.; Peters, T. J. Am. Chem. Soc. 2003, 125, 14.
[66] Mayer, M.; James, T. L. J. Am. Chem. Soc. 2002, 124, 13376.
[67] Klein, J.; Meinecke, R.; Mayer, M.; Meyer, B. J. Am. Chem. Soc. 1999, 121, 5336.
[68] Nicholson, J. K.; Lindon, J. C.; Holmes, E. Xenobiotica 1999, 29, 1181.
[69] Liu, M.; Nicholson, J. K.; Lindon, J. C.; Sanderson, P. N.; Tranter, G. E. Magn. Reson. Chem. 1996, 34, 865.
[70] Wold, S.; Esbensen, K.; Geladi, P. Chemometr. Intell. Lab. Syst. 1987, 2, 37.
[71] Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. Nature 2002, 420, 98.
[72] Li, M.; Wang, B. H.; Zhang, M. H.; Rantalainen, M.; Wang, S. Y.; Zhou, H. K.; Zhang, Y.; Shen, J.; Pang, X. Y.; Zhang, M. L.; Wei, H.; Chen, Y.; Lu, H. F.; Zuo, J.; Su, M. M.; Qiu, Y. P.; Jia, W.; Xiao, C. N.; Smith, L. M.; Yang, S. L.; Holmes, E.; Tang, H. R.; Zhao, G. P.; Nicholson, J. K.; Li, L. J.; Zhao, L. P. Proc. Natl. Acad. Sci. 2008, 105, 2117.
[73] Clayton, T. A.; Lindon, J. C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J. P.; Le Net, J. L.; Baker, D.; Walley, R. J.; Everett, J. R.; Nicholson, J. K. Nature 2006, 440, 1073.
[74] Nicholson, J. K.; Holmes, E.; Wilson, I. D. Nat. Rev. Microbiol. 2005, 3, 431.
[75] Holmes, E.; Loo, R. L.; Stamler, J.; Bictash, M.; Yap, I. K. S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I. J.; Veselkov, K. A.; Daviglus, M. L.; Kesteloot, H.; Ueshima, H.; Zhao, L. C.; Nicholson, J. K.; Elliott, P. Nature 2008, 453, 396.
[76] Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Nat. Rev. Drug Discov. 2002, 1, 153.
[77] Wang, Y. L.; Holmes, E.; Nicholson, J. K.; Cloarec, O.; Chollet, J.; Tanner, M.; Singer, B. H.; Utzinger, J. Proc. Natl. Acad. Sci. 2004, 101, 12676.
[78] Solanky, K. S.; Bailey, N. J.; Beckwith-Hall, B. M.; Bingham, S.; Davis, A.; Holmes, E.; Nicholson, J. K.; Cassidy, A. J. Nutr. Biochem. 2005, 16, 236.
[79] Wang, Y. L.; Tang, H. R.; Nicholson, J. K.; Hylands, P. J.; Sampson, J.; Holmes, E. J. Agric. Food Chem. 2005, 53, 191.
[80] Bertram, H. C.; Andersen, R. H.; Andersen, H. J. Meat Sci. 2007, 75, 128.
[81] Lucas, T.; Quellec, S.; Le Bail, A.; Davenel, A. J. Food Eng. 2005, 70, 151.
[82] Kuo, M. I.; Gunasekaran, S.; Johnson, M.; Chen, C. J. Dairy Sci. 2001, 84, 1950.
[83] Rudi, T.; Guthausen, G.; Burk, W.; Reh, C. T.; Isengard, H. D. Food Chem. 2008, 106, 1375.
[84] Kiokias, S.; Reszka, A. A.; Bot, A. Int. Dairy J. 2004, 14, 287.
[85] Bertram, H. C.; Wiking, L.; Nielsen, J. H.; Andersen, H. J. Int. Dairy J. 2005, 15, 1056.
[86] Ruan, R.; Long, Z.; Chen, P.; Huang, V.; Almaer, S.; Taub, I. J. Food Sci. 1999, 64, 6.
[87] Pitombo, R. N. M.; Lima, G. A. M. R. J. Food Eng. 2003, 58, 59.
[88] Atichokudomchai, N.; Varavinit, S.; Chinachoti, P. Carbohydr. Polym. 2004, 58, 383.
[89] Tananuwong, K.; Reid, D. S. Carbohydr. Polym. 2004, 58, 345.
[90] Elomaa, M.; Asplund, T.; Soininen, P.; Laatikainen, R.; Peltonen, S.; Hyvarinen, S.; Urtti, A. Carbohydr. Polym. 2004, 57, 261.
[91] Wang, L.; Li, Y.; Hu, J. H. Chin. Oils Fats 2008, 75. (王乐, 黎勇, 胡健华, 中国油脂, 2008, 75.)
[92] Han, X. L.; Zhang, W. J.; Wang, D. L.; Wang, Y. J.; L. H. Liquor-Making Sci. & Technol. 2009, 112. (韩兴林, 张五九, 王德良, 王异静, 李红, 酿酒科技, 2009, 112.)
[93] Bayer, E.; Albert, K.; Nieder, M.; Grom, E.; Wolff, G.; Rindlisbacher, M. Anal. Chem. 1982, 54, 1747.
[94] Fyfe, C. A.; Cocivera, M.; Damji, S. W. H.; Hostetter, T. A.; Sproat, D.; Obrien, J. J. Magn. Reson. 1976, 23, 377.
[95] Haw, J. F.; Glass, T. E.; Hausler, D. W.; Motell, E.; Dorn, H. C. Anal. Chem. 1980, 52, 1135.
[96] Benfenati, E.; Pierucci, P.; Fanelli, R.; Preiss, A.; Godejohann, M.; Astratov, M.; Levsen, K.; Barcelo, D. J. Chromatogr. A 1999, 831, 243.
[97] Exarchou, V.; Godejohann, M.; van Beek, T. A.; Gerothanassis, I. P.; Vervoort, J. Anal. Chem. 2003, 75, 6288.
[98] Godejohann, M.; Tseng, L. H.; Braumann, U.; Fuchser, J.; Spraul, M. J. Chromatogr. A 2004, 1058, 191.
[99] Frydman, L.; Scherf, T.; Lupulescu, A. Proc. Natl. Acad. Sci. 2002, 99, 15858.
[100] Kim, S.; Szyperski, T. J. Am. Chem. Soc. 2003, 125, 1385.
[101] Kupce, E.; Freeman, R. J. Biomol. NMR 2003, 27, 383.
[102] Schanda, P.; Brutscher, B. J. Am. Chem. Soc. 2005, 127, 8014.
[103] Szyperski, T.; Yeh, D. C.; Sukumaran, D. K.; Moseley, H. N. B.; Montelione, G. T. Proc. Natl. Acad. Sci. 2002, 99, 8009.
[104] Foxall, P. J. D.; Lenz, E. M.; Lindon, J. C.; Neild, G. H.; Wilson, I. D.; Nicholson, J. K. Ther. Drug Monit. 1996, 18, 498.
[105] Nicholls, A. W.; Lindon, J. C.; Farrant, R. D.; Shockcor, J. P.; Wilson, I. D.; Nicholson, J. K. J. Pharmaceut. Biomed. 1999, 20, 865.
[106] Spraul, M.; Hofmann, M.; Lindon, J. C.; Farrant, R. D.; Seddon, M. J.; Nicholson, J. K.; Wilson, I. D. NMR Biomed. 1994, 7, 295.
[107] Xiao, H. B.; Krucker, M.; Putzbach, K.; Albert, K. J. Chromatogr. A 2005, 1067, 135.
[108] Harrigan, G. G.; Goetz, G. H. Comb. Chem. High Throughput Screen 2005, 8, 529.
[109] Keifer, P. A. Magn. Reson. Chem. 2003, 41, 509.
[110] Keifer, P. A.; Smallcombe, S. H.; Williams, E. H.; Salomon, K. E.; Mendez, G.; Belletire, J. L.; Moore, C. D. J. Comb. Chem. 2000, 2, 151.
[111] Shapira, B.; Karton, A.; Aronzon, D.; Frydman, L. J. Am. Chem. Soc. 2004, 126, 1262.
[112] Zhou, Z. M.; Zhang, W. L.; Zhang, X.; Ye, C.; Liu, M. L. In The Abstracts of the 14th National Spectroscopy Conference, 2006. (周志明, 张维农, 张许, 叶朝辉, 刘买利, In 第十四届全国波谱学学术会议论文摘要集, 2006.)
/
〈 |
|
〉 |