研究论文

边臂修饰的水杨醛亚胺第四族金属配合物的合成、结构及其乙烯聚合行为研究

  • 王新科 ,
  • Sit Met-Met ,
  • 孙杰 ,
  • 唐勇 ,
  • 谢作伟
展开
  • a 金属有机化学国家重点实验室 中国科学院上海有机化学研究所 上海 200032;
    b 沪港化学合成联合实验室 中国科学院上海有机化学研究所 上海 200032;
    c 香港中文大学化学系 香港新界沙田

收稿日期: 2012-06-25

  网络出版日期: 2012-08-14

基金资助

项目受国家自然科学基金(No. 20932008)、国家自然科学基金/香港资助局(No. N_CUHK470/10 to ZX and No. 21061160493 to TY)和中国科学院-求槎基金(No. GJHZ200816)资助.

Synthesis, Structure and Ethylene Polymerization Behavior of Group 4 Metal Complexes Bearing Salicylaldaminato Ligands with Appended Donor Functionality

  • Wang Xinke ,
  • Sit Met-Met ,
  • Sun Jiea ,
  • Tang Yong ,
  • Xie Zuowei
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
    b Shanghai-Hong Kong Joint Lab in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
    c Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Received date: 2012-06-25

  Online published: 2012-08-14

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn Project supported by the National Natural Science Foundation of China (No. 20932008), NSFC/RGC Joint Research Scheme (No. N_CUHK470/10 to ZX and No. 21061160493 to TY) and the CAS-Croucher Funding Scheme (No. GJHZ200816).

摘要

通过给电子基团取代的(E)-2,4-二-叔丁基-6-(苯基亚胺基甲基)苯酚与等当量的M(CH2Ph)4 反应制备了一系列第四族金属的双苄基配合物. 反应经历了甲苯消除及分子内苄基从金属至亚胺碳的迁移反应, 中间体的分离和结构鉴定证实了该反应历程. 通过核磁、元素分析和X-ray 单晶衍射表征了配合物的结构. 在甲基铝氧烷(MMAO)的活化下, 钛配合物可以高活性地催化乙烯的均聚合和乙烯/1-己烯的共聚合, 而相应的锆、铪的配合物在同样的条件下则几乎没有活性.

本文引用格式

王新科 , Sit Met-Met , 孙杰 , 唐勇 , 谢作伟 . 边臂修饰的水杨醛亚胺第四族金属配合物的合成、结构及其乙烯聚合行为研究[J]. 化学学报, 2012 , 70(18) : 1909 -1916 . DOI: 10.6023/A12060342

Abstract

A series of group 4 metal complexes were synthesized by an equimolar reaction of M(CH2Ph)4 with (E)-2,4-di-tert-butyl-6-[(phenylimino)methyl]phenol bearing donor functionality. This process involved toluene elimination followed by an intramolecular migration reaction of one benzyl group from metal to the imino carbon, which was supported by the isolation and structural characterization of the intermediate. These new complexes were fully characterized by multinuclear NMR spectroscopy, elemental analyses and X-ray analyses. The titanium complexes showed a very high activity in both ethylene polymerization and ethylene/1-hexene copolymerization upon activation with modified methylaluminoxane (MMAO), whereas the corresponding zirconium and hafnium complexes were almost inactive under the same reaction conditions.

参考文献

[1] (a) McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98, 2587;

(b) Bochmann, M. Topics in Catalysis 1999, 7, 9;   

(c) Alt, H. G.; Köppl, A. Chem. Rev. 2000, 100, 1205;

(d) Coates, G. W. Chem. Rev. 2000, 100, 1223;

(e) Makio, H.; Terao, H.; Iwashita, A.; Fujita T. Chem. Rev. 2011, 111, 2363  

[2] (a) Sinn, H.; Kaminsky, W.; Vollmer, H.-J.; Woldt, R. Angew. Chem., Int. Ed. 1980, 19, 390;   

(b) Shapiro, P. J.; Bunel, E.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1990, 9, 867;   

(c) Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4623;   

(d) Nomura, K.; Liu, J.; Padmanabhan, S.; Kitiyanan, B. J. Mol. Catal. A: Chem. 2007, 267, 1.

[3] Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428.  

[4] For recent reviews on the catalysts of olefin polymerization, see: (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169;   

(b) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534;   

(c) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283;   

(d) Yoshida, Y.; Matsui, S.; Fujita, T. J. Organomet. Chem. 2005, 690, 4382;   

(e) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745;   

(f) Redshaw, C.; Tang, Y. Chem. Soc. Rev. 2012, 41, 4484.   

[5] (a) Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Science 2006, 312, 714;   

(b) Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M. K.; Murphy, V.; Shoemaker, J. A. W.; Turner, H.; Rosen, R. K.; Stevens, J. C.; Alfano, F.; Busico, V.; Cipullo, R.; Talarico, G. Angew. Chem., Int. Ed. 2006, 45, 3278;

(c) Froese, R. D. J.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. J. Am. Chem. Soc. 2007, 129, 7831;   

(d) Long, R. J.; Jones, D. J.; Gibson, V. C.; White, A. Organometallics 2008, 27, 5960.  

[6] (a) Li, X.-F.; Dai, K.; Ye, W.-P.; Pan, L.; Li, Y.-S. Organometallics 2004, 23, 1223;   

(b) Zhang, J.; Lin, Y.-J.; Jin, G.-X. Organometallics 2007, 26, 4042;   

(c) Ye, W.-P.; Zhan, J.; Pan, L.; Hu, N.-H.; Li, Y.-S. Organometallics 2008, 27, 3642;   

(d) He, L.-P.; Liu, J.-Y.; Li, Y.-G.; Liu S.-R.; Li, Y.-S. Macromolecules 2009, 42, 8566;   

(e) Jia, A.-Q.; Jin, G.-X. Organometallics 2009, 28, 1872;   

(f) Jia, A.-Q.; Jin, G.-X. Dalton Trans. 2009, 8838;   

(g) Liu, S.; Yi, J.; Zuo, W.; Wang, K.; Wang, D.; Sun, W.-H. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3154;

(h) Sun, W.-H.; Liu, S.; Zhang, W.; Zeng, Y.; Wang, D.; Liang, T. Organometallics 2010, 29, 732;   

(i) Ye, W.-P.; Shi, X.-C.; Li, B.-X.; Liu, J.-Y.; Li, Y.-S.; Cheng, Y.-X.; Hu, N.-H. Dalton Trans. 2010, 39, 9000;   

(j) Shi, X.-C.; Wang, Y.-X.; Liu, J.-Y.; Cui, D.-M.; Men, Y.-F.; Li Y.-S. Macromolecules 2011, 44, 1062;   

(k) Hu, P.; Wang, F.; Jin, G.-X. Organometallics 2011, 30, 1008;   

(l) Shi, X.-C.; Jin, G.-X. Dalton Trans. 2011, 40, 11914;   

(m) Hu, P.; Qiao, Y.-L.; Wang, J.-Q.; Jin, G.-X. Organometallics 2012, 31, 3241.  

[7] (a) Matsui, S.; Tohi, Y.; Mitani, M.; Saito, J.; Makio, H.; Tanaka, H.; Nitabaru, M.; Nakano, T.; Fujita, T. Chem. Lett. 1999, 1065;   

(b) Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. 2001, 123, 6847;   

(c) Makio, H.; Kashiwa, N.; Fujita, T. Adv. Synth. Catal. 2002, 344, 477;   

(d) Sakuma, A.; Weiser, M.-S.; Fujita, T. Polym. J. 2007, 39, 193;   

(e) Terao, H.; Ishii, S.; Mitani, M.; Tanaka, H.; Fujita, T. J. Am. Chem. Soc. 2008, 130, 17636;   

(f) Matsugi, T.; Fujita, T. Chem. Soc. Rev. 2008, 37, 1264.  

[8] (a) Tian, J.; Coates, G. W. Angew. Chem., Int. Ed. 2000, 39, 3626;   

(b) Hustad, P. D.; Tian, J.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 3614;   

(c) Reinartz, S.; Mason, A. F.; Lobkovsky, E. B.; Coates, G. W. Organometallics 2003, 22, 2542;   

(d) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 16326;   

(e) Rose, J. M.; Mourey, T. H.; Slater, L. A.; Keresztes, I.; Fetters, L. J.; Coates, G. W. Macromolecules 2008, 41, 559;   

(f) Edson, J. B.; Wang, Z.; Kramer, E. J.; Coates, G. W. J. Am. Chem. Soc. 2008, 130, 4968.  

[9] (a) Hu, W. Q.; Sun, X. L.; Wang, C.; Gao, Y.; Tang, Y.; Shi, L. P.; Xia, W.; Sun, J.; Dai, H. L.; Li, X. Q.; Yao, X. L.; Wang, X. R. Organometallics 2004, 23, 1684;   

(b) Wang, C.; Sun, X.-L.; Guo, Y.-H.; Gao, Y.; Liu, B.; Ma, Z.; Xia, W.; Shi, L.-P.; Tang, Y. Macromol. Rapid Commun. 2005, 26, 1609;

(c) Wang, C.; Ma, Z.; Sun, X.-L.; Gao, Y.; Guo, Y.-H.; Tang, Y.; Shi, L.-P. Organometallics 2006, 25, 3259;   

(d) Gao, M.; Wang, C.; Sun, X.; Qian, C.; Ma, Z.; Bu, S.; Tang, Y.; Xie, Z. Macromol. Rapid Commun. 2007, 28, 1511;   

(e) Yang, X.-H.; Liu, C.-R.; Wang, C.; Sun, X.-L.; Guo, Y.-H.; Wang, X.; Wang, Z.; Xie, Z.; Tang, Y. Angew. Chem., Int. Ed. 2009, 48, 8099.

[10] (a) Xie, Z. Coord. Chem. Rev. 2006, 250, 259;   

(b) Mingos, M. D.; Crabtree, R. H. Eds. In Comprehensive Organometallic Chemistry III, Vol. 4, Amsterdam, Elsevier, 2007, p. 761.  

[11] Bruce, M.; Gibson, V. C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 2523.

[12] (a) Woodman, P. R.; Alcock, N. W.; Munslow, I. J.; Sanders, C. J.; Scott, P. J. Chem. Soc., Dalton Trans. 2000, 3340;

(b) Knight, P. D.; Clarke, A. J.; Kimberley, B. S.; Jackson, R. A.; Scott, P. Chem. Commun. 2002, 352;   

(c) Knight, P. D.; O’Shaughnessy, P. N.; Munslow, I. J.; Kimberley, B. S.; Scott, P. J. Organomet. Chem. 2003, 683, 103;   

(d) Knight, P. D.; Clarkson, G.; Hammond, M. L.; Kimberley, B. S.; Scott, P. J. Organomet. Chem. 2005, 690, 5125.  

[13] (a) Tsurugi, H.; Yamagata, T.; Tani, K.; Mashima, K. Chem. Lett. 2003, 32, 756;   

(b) Tsurugi, H.; Matsuo, Y.; Yamagata, T.; Mashima, K. Organometallics 2004, 23, 2797;   

(c) Tsurugi, H.; Ohnishi, R.; Kaneko, H.; Panda, T. K.; Mashima, K. Organometallics 2009, 28, 680;   

(d) Tsurugi, H.; Yamamoto, K.; Mashima, K. J. Am. Chem. Soc. 2011, 133, 732.  

[14] (a) Jantunen, K. C.; Scott, B. L.; Hay, P. J.; Gordon, J. C.; Kiplinger, J. L. J. Am. Chem. Soc. 2006, 128, 6322;   

(b) Masuda, J. D.; Jantunen, K. C.; Scott, B. L.; Kiplinger, J. L. Organometallics 2008, 27, 803;   

(c) Masuda, J. D.; Jantunen, K. C.; Scott, B. L.; Kiplinger, J. L. Organometallics 2008, 27, 1299.  

[15] Partial hydrolysis of zirconium dibenzyls, see: Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2005, 127, 17198.  

[16] (a) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349;   

(b) O’Sullivan, C.; Murphy, G.; Murphy, B.; Hathaway, B. J. Chem. Soc., Dalton Trans. 1999, 1835.

[17] (a) Kirillov, E.; Roisnel, T.; Razavi, A.; Carpentier, J. Organometallics 2009, 28, 5036;   

(b) Tam, K.-H.; Chan, M. C. W.; Kaneyoshi, H.; Makio, H.; Zhu, N. Organometallics 2009, 28, 5877;   

(c) Golisz, S. R.; Labinger, J. A.; Bercaw, J. E. Organometallics 2010, 29, 5026.  

[18] For group 4 metal-heteroatom bond distances, see: (a) Graf, D. D.; Schrock, R. R.; Davis, W. M.; Stumpf, R. Organometallics 1999, 18, 843;   

(b) Hart, R.; Levason, W.; Patel, B.; Reid, G. J. Chem. Soc., Dalton Trans. 2002, 3153.   

(c) Stefan, F.; Reichwald, F.; Spaniol, T. P.; Okuda, J. J. Organomet. Chem. 2002, 663, 158;   

(d) Natrajan, L. S.; Wilson, C.; Okuda, J.; Arnold, P. L. Eur. J. Inorg. Chem. 2004, 3724;

(e) Oakes, D.; Kimberley, B. S.; Gibson, V. C.; Jones, D. J.; White, A. J. P.; Williams, D. J. Chem. Commun. 2004, 19, 2174;

(f) Long, R. J.; Gibson, V. C.; White, A. Organometallics 2008, 27, 235;   

(g) Janas, Z.; Godbolea, D.; Nerkowskia, T.; Szczegotb, K. Dalton Trans. 2009, 8846.  

[19] (a) Cavell, R. G.; Kamalesh Babu, R. P.; Aparna, K. J. Organomet. Chem. 2001, 617-618, 158;

(b) Singleton, J. T. Tetrahedron 2003, 59, 1837;   

(c) Hisao, N. Chem. Soc. Rev. 2007, 36, 1133;   

(d) Selander, N.; Szabo, K. J. Chem. Rev. 2011, 111, 2048.  

[20] Munha, R. F.; Antunes, M. A.; Alves, L. G.; Veiros, L. F.; Fryzuk, M. D.; Martins, A. M. Organometallics 2010, 29, 3753.  

[21] (a) Tshuva, E. Y.; Groysman, S.; Goldberg, I.; Kol, M. Organometallics 2002, 21, 662;   

(b) Hu, Y.-C.; Tsai, C.-C.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Organometallics 2010, 29, 516.  

[22] (a) Giesbrecht, G. R.; Whitener, G. D.; Arnold, J. Organometallics 2000, 19, 2809;   

(b) Leitch, D. C.; Schafer, L. L. Organometallics 2010, 29, 5162.  

[23] (a) Chen, C.; Lee, H.; Jordan, R. F. Organometallics 2010, 29, 5373;   

(b) Froese, R. D. J.; Jazdzewski, B. A.; Klosin, J.; Kuhlman, R. L.; Theriault, C. N.; Welsh, D. M. Organometallics 2011, 30, 251;   

(c) Figueroa, R.; Froese, R. D.; He, Y.; Klosin, J.; Theriault, C. N. Organometallics 2011, 30, 1695;   

(d) Szuromi, E.; Klosin, J. Organometallics 2011, 30, 4589.  

[24] Said, M.; Hughes, D. L.; Bochmann, M. Inorg. Chim. Acta 2006, 359, 3467.  

[25] (a) Randall, J. C. JMS-Rev. Macromol. Chem. Phys. 1989, C29, 201;

(b) Hsieh, E. T.; Randall, J. C. Macromolecules 1982, 15, 1402;   

(c) Cho, D. J.; Wu, C. J.; Han, W.-S.; Kang, S. O.; Lee, B. Y. Organometallics 2006, 25, 2133.  

[26] Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.Sheldrick, G. M. SHELXTL 5.10 for Windows NT: Structure Determination Software Programs, Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997.  
文章导航

/