研究论文

荧光石墨烯量子点制备及其在细胞成像中的应用

  • 谢文菁 ,
  • 傅英懿 ,
  • 马红 ,
  • 张沫 ,
  • 范楼珍
展开
  • 北京师范大学化学学院 北京 100875

收稿日期: 2012-06-23

  网络出版日期: 2012-08-27

基金资助

项目受国家自然科学基金(No. 21073018, 21233003)和中央高校基本科研业务费专项资金资助.

Preparation of Fluorescent Graphene Quantum Dots as Biological Imaging Marker for Cells

  • Xie Wenjing ,
  • Fu Yingyi ,
  • Ma Hong ,
  • Zhang Mo ,
  • Fan Louzhen
Expand
  • Department of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2012-06-23

  Online published: 2012-08-27

Supported by

Project supported by the National Natural Science Foundation of China (No. 21073018, 21233003) and the Fundamental Research Funds for the Central University.

摘要

利用电化学方法在碱性条件下电解石墨棒, 通过常温下水合肼还原, 得到5~10 nm的荧光石墨烯量子点(Graphene Quantum Dots, GQDs). 通过透射电子显微镜(TEM)、原子力显微镜(AFM)对所制备的GQDs进行形貌表征, GQDs的粒子大小均一, 为单层石墨烯. 通过傅里叶变换红外光谱(FTIR)、荧光光谱(PL)、紫外可见吸收光谱(UV-vis)、X 射线衍射光谱(XRD)对所制备的GQDs进行性质测定, 发现GQDs可以发出黄色荧光, 量子产率为14%, 毒性低、具有良好的水溶性、荧光稳定性和生物兼容性, 可顺利进入细胞, 在肿瘤细胞的成像研究方面具有广泛的应用前景.

本文引用格式

谢文菁 , 傅英懿 , 马红 , 张沫 , 范楼珍 . 荧光石墨烯量子点制备及其在细胞成像中的应用[J]. 化学学报, 2012 , 70(20) : 2169 -2172 . DOI: 10.6023/A12060302

Abstract

Currently, graphene has attracted much attention in the fields of bioimaging, biolabeling and drug delivery. Theoretical and experimental studies have shown that the graphene quantum dots (GQDs) are expected to show good optical properties due to their quantum confinement and edge effect. In this report, using the electrochemical assay the fluorescent GQDs with a diameter between 5 and 10 nm could be obtained via electrolysing graphite in alkaline condition and with hydrazine hydrate as a reducing agent at room temperature. The structure of the GQDs was confimed by means of transmission electron microscope (TEM) and atomic force microscope (AFM). The finding showed that the GQDs have an uniform size, and most of them are separate graphene. The GQDs mainly consist of single layer with less than 1 nm. Their features and properties were characterized by fourier transform infrared spectroscopy (FTIR), photoluminescence spectra (PL), UV-visible spectroscopy (UV-vis) and X-ray diffraction (XRD). The results indicated that the GQDs have bright yellow luminescence with a 14 % quantum yield, which is higher than that of traditional carbon quantum dots reported previously. When they were excited by different excitation wavelengths, the intensity of photoluminescence increased to the maximum, and then decreased gradually. The fluorescent emission peak of the GQDs remained unshifted, suggesting a novel kind of quantum dots different from those of graphene oxide quantum dots depending excitation wavelengths. The luminescence of GQDs arises from the graphene modified with the phthalhydrazide-like groups and hydrazide groups at the edge. The highly fluorescent GQDs have high water solubility, good photostability and biocompatibility, indicating that the GQDs can easily enter the cells. By incorporating the GQDs with A549 (lung cancer) and MCF-7 (breast cancer) cells through MTT assay, the newly obtained GQDs exhibited low cytotoxicity with an advantage of strong photoluminescence in the cells, and thus the GQDs might be used as a bioimaging marker in tumor cell imaging.

参考文献

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,

Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

[2] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.

[3] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.

[4] Liang, M.-H.; Zhi, L.-J. J. Mater. Chem. 2009, 19, 5871.

[5] Si, Y.; Samulski, E. T. Chem. Mater. 2008, 20, 6792.

[6] Liu, Z.; Robinson, J. T.; Sun, X.-M.; Dai, H.-J. J. Am. Chem. Soc. 2008, 130, 10876.

[7] Lin, L.; Liu, Y.; Zhao, X.; Li, J.-H. Anal. Chem. 2011, 83, 8396.

[8] Wang, Y.; Li, Z.-H.; Hu, D.-H.; Lin, C.-T.; Li, J.-H.; Lin, Y.-H. J. Am. Chem. Soc. 2010, 132, 9274.

[9] Chen, D.; Tang, L.-H.; Li, J.-H. Chem. Soc. Rev. 2010, 39, 3157.

[10] Wang, Y.; Li, Z.-H.; Wang, J.; Li, J.-H.; Lin, Y.-H. Trends Biotechnol. 2011, 29, 205.

[11] Ritter, K. A.; Lyding, J. W. Nat. Mater. 2009, 8, 235.

[12] Li, W. H.; Yang, C. C.; Tsao, F. C.; Wu, S. Y.; Huang, P. J.; Chung, M. K.; Yao, Y. D. Phys. Rev. B: Condens. Matter 2005, 72, 214516.

[13] Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. Adv. Mater. 2011, 23, 776.

[14] Zhu, S.-J.; Zhang, J.-H.; Qiao, C.-Y.; Tang, S.-J.; Li, Y.-F.; Yuan, W.-J.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.-N.; Wei, H.-T.; Zhang, H.; Sun, H.-C.; Yang, B. Chem. Commun. 2011, 47, 6858.

[15] Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M. Nano Lett. 2012, 12, 844.

[16] Riggs, J. E.; Guo, Z.; Carroll, D. L.; Sun, Y.-P. J. Am. Chem. Soc. 2000, 122, 5879.

[17] Faklaris, O.; Joshi, V.; Irinopoulou, T.; Tauc, P.; Sennour, M.; Girard, H.; Gesset, C.; Arnault, J.-C.; Thorel, A.; Boudou, J.-P.; Curmi, P. A.; Treussart, F. ACS Nano 2009, 3, 3955.

[18] Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y. J. Am. Chem. Soc. 2006, 128, 7756.

[19] Liu, H.-P.; Ye, T.; Mao, C.-D. Angew. Chem., Int. Ed. 2007, 46, 6473.

[20] White, E. H.; Bursey, M. M. J. Am. Chem. Soc. 1964, 86, 941.

[21] Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M.; Liu, C.; Yang, S. J. Mater. Chem. 2012, 22, 7461.

文章导航

/