EuF3-NaYF4纳米晶/PNIPAm三元复合凝胶的荧光温敏行为与影响机制
收稿日期: 2012-07-14
网络出版日期: 2012-08-25
基金资助
项目受安徽省教育厅自然科学研究项目(No. 2009AJZR0137)和合肥工业大学创新基金(No. cxsy2010071)资助.
Thermosensitive Fluorescent Behavior and Mechanism of EuF3-NaYF4 Nanocrystals/PNIPAm Ternary Complex Hydrogel
Received date: 2012-07-14
Online published: 2012-08-25
Supported by
Project supported by the Science Foundation of Educational Department of Anhui Province of China (grant No: 2009AJZR0137) and Innovational Foundation of Hefei University of Technology (grant No. cxsy2010071).
宋秋生 , 高康 , 姚伟 , 杨洋 , 马海红 . EuF3-NaYF4纳米晶/PNIPAm三元复合凝胶的荧光温敏行为与影响机制[J]. 化学学报, 2012 , 70(20) : 2155 -2161 . DOI: 10.6023/A12070417
In this work, EuF3 and NaYF4 nanocrystals were prepared by liquid-solution-solid (LSS) method respectively, high-resolution transmission electron microscopy (HRTEM) images revealed that the as-prepared NaYF4 nanocrystals were monodisperse nanoparticles with the size about 30 nm; while the as-prepared EuF3 were polydisperse nanoparticles with the size of 5~20 nm. And they were used to prepare a series of novel ternary complex hydrogels of EuF3-NaYF4 nanocrystals/poly(N-isopropyl acrylamide) (PNIPAm) by free radical polymerization. In a typical synthesis, 2 mg the as-prepared EuF3 and NaYF4 nanocrystals, 201.6 mg reactants of N-isopropyl acrylamide (NIPAm), N,N'-methylenebisacrylamide (BIS) and azodiisobutyronitrile (AIBN) (mNIPAm∶mBIS∶mAIBN=200/0.2/1.4) and 4 mL CHCl3 were mixed and added into a 10 mL sealing tube. The tube was placed into an ultrasonic oscillator for about 10 min to obtain a uniform mixture, and then oxygen was removed by bubbling N2 and successfully exerting vacuum on the tube for about 5 min. After the operation was repeated three times, the tube was sealed and kept at 60 ℃ for 3 h. After that, the crude complex hydrogels were synthesized. Finally, the crude hydrogels were immersed into deionized water to remove the remained monomers and impurities. The total time of soaking was about 7 d, and the deionized water was replaced every 10 h. Following the above procedure, all of the mentioned EuF3-NaYF4/PNIPAm complex hydrogels were obtained. The structure and fluorescent properties of the complex hydrogels were investigated by differential scanning calorimeter (DSC), photoluminescence (PL), Fourier transform infrared (FTIR), X-ray diffraction (XRD). And the thermosensitive fluorescent behavior of the complex hydrogels was investigated and the mechanism was discussed in detail. The results suggested that, in the PNIPAm hydrogel matrix, energy can be transferred between the bulk doped EuF3 nanocrystals and NaYF4 nanocrystals. Either the relative content of two kinds of nanocrystals or the ambient temperature plays an important role in the thermosensitive fluorescent behavior of the complex hydrogels.
Key words: EuF3 nanocrystal; NaYF4 nanocrystal; thermosensitive hydrogel; PL intensity; PNIPAm
[1] Wang, D. S.; Li, Y. D. Adv. Mater. 2011, 23, 1044.
[2] Li, G. W.; Min, G. Q.; Fei, L. C.; Ni, X. Y.; Lu, W. Q. J. Colloid Interface Sci. 2009, 334, 8.
[3] Ioannis, K.; Victoria, E.; Monique, B.; Maren, B.; Vladimir, L.; Alexander, E.; Elisabeth, H. Polymer 2010, 51, 5669.
[4] Xiao Y.; Gao, Z. Y.; Wu, D. P.; Jiang, Y.; Liu, N.; Yi, R.; Jiang, K. Mater. Chem. Phys. 2011, 129, 161.
[5] Zhang, D. S.; Yan, T. T.; Li, H. R.; Shi L. Y. Microporous Mesoporous Mater. 2011, 141, 110.
[6] Meng, Q. B.; Takahashi, K. Langmuir 2003, 19, 3572.
[7] Wang, X. L.; Zhao, S. H.; Zhang Y. J.; Sheng G. D. J. Rare Earth 2010, 28, 222.
[8] Wang, G. F.; Qin, W. P.; Zhang, J. S.; Wang, L. L.; Wei, G. D.; Zhu, P. F. J. Alloys Compd. 2009, 475, 452.
[9] Dai, Y. L.; Ma, P. A.; Cheng, Z. Y.; Kang, X. J.; Zhang, X.; Hou, Z. Y.; Li, C. X.; Yang, D. M.; Zhai, X. F.; Lin, J. ACS Nano. 2012, 4, 3327.
[10] Dong, S. Y.; Luo, Y.; Yan, X. Z.; Zheng, B.; Ding, X.; Yu, Y. H.; Ma, Z.; Zhao, Q.; Huang, F. H. Angew. Chem., Int. Ed. 2011, 50, 1905.
[11] Dong, S. Y.; Zheng, B.; Xu, D. H.; Yan, X. Z.; Zhang, M. M.; Huang, F. H. Adv. Mater. 2012, 24, 3191.
[12] Nikolay, R.; Irina, L.; Florian, W.; Joanna, K. O.; Holger, B.; Jurgen, P. J. Phys. Chem. C 2011, 115, 14111.
[13] Mansur, H. S.; Mansur, A. A. P.; González, J. C. Polymer 2011, 52, 1045.
[14] Takeshi, O.; Yoshiki, C. Polymer 2009, 50, 3174.
[15] Agrawal, M.; Rubio-Retama, J.; Zafeiropoulos, N. E.; Gaponik, N. Gupta, S.; Cimrova, V.; Lesnyak, V.; Lopez-Cabarcos, E.; Tzavalas, S.; Rojas-Reyna, R.; Eychmuller, A.; Stamm, M. Langmuir 2008, 24, 9820.
[16] Song, Q. S.; Yang, Y.; Zhu, X. F. Chem. J. Chin. Univ. 2012, 33, 1084. (宋秋生, 杨洋, 朱小飞, 高等学校化学学报, 2012, 33, 1084.)
[17] Song, Q. S.; Zhu, X. F.; Yang, Y. Acta Polym. Sinica 2012, 440. (宋秋生, 朱小飞, 杨洋, 高分子学报, 2012, 440.)
[18] Sun, Y.; Yan, C. G.; Yao, Y.; Han, Y.; Shen, M. Adv. Funct. Mater. 2008, 18, 3981.
[19] Li, C.; Zhang, C.; Hou, Z.; Wang, L.; Quan, Z.; Lian, H.; Lin, J. J. Phys. Chem. C 2009, 113, 2332.
[20] Chen, D. Q.; Yu, Y. L.; Huang, P.; Lin, H.; Shan, Z. F.; Wang, Y. S. Acta Mater. 2010, 58, 3035.
[21] Wouter, L.; Sam, V.; Eric, J. G. Macromol. Chem. Phys. 2003, 204, 98.
[22] Sudarsan, V.; Sivakumar, S.; Van Veggel, F. C. J. M. Chem. Mater. 2005, 17, 4736.
[23] Le, W. S. M.S. Dissertation, Changchun University of Science and Technology, Changchun, 2008. (乐务时, 硕士论文, 长春理工大学, 长春, 2008.)
[24] Sharma, P. K.; Jilavi, M. H.; Nass, R.; Schmidt, H. Luminescence 1999, 82, 187.
[25] Liu, Z.; Sun, B.; Xu, S.; Lian, J.; Li, X.; Xiu, Z.; Li, Q.; Huo, D.; Li, J. G. Phys. Chem. C 2008, 112, 2353.
[26] Wu, C.; Wang, Y. Mater. Lett. 2007, 61, 2416.
[27] Liu, X.; Wang, X. Opt. Mater. 2007, 30, 626.
[28] Park, C. S.; Kwak, M. G.; Choi, S. S.; Song, Y. S.; Hong, S. J.; Han, J. I.; Lee, D. Y. Luminescence 2006, 118, 199.
/
〈 |
|
〉 |