研究通讯

表面引发的DNA杂交链式反应的石英晶体微天平研究

  • 王萍 ,
  • 葛志磊 ,
  • 裴昊 ,
  • 王丽华 ,
  • 樊春海
展开
  • 中国科学院上海应用物理研究所物理生物学实验室 上海 201800

收稿日期: 2012-08-03

  网络出版日期: 2012-09-05

基金资助

项目受国家自然科学基金(No. 21075128)和上海市科委(No. 10QA1408200)资助.

Quartz Crystal Microbalance Studies on Surface-Initiated DNA Hybridization Chain Reaction

  • Wang Ping ,
  • Ge Zhilei ,
  • Pei Hao ,
  • Wang Lihua ,
  • Fan Chunhai
Expand
  • Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800

Received date: 2012-08-03

  Online published: 2012-09-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21075128) and Shanghai Municipal Commission for Science and Technology (No. 10QA1408200).

摘要

通过石英晶体振荡技术研究了杂交链式反应这种核酸扩增的方法. 石英晶体微天平可以表征在晶体和溶液的界面上的DNA层, 并获得粘性穿透深度这一重要参数. 根据石英晶体表面吸附质量和振荡频率之间的关系, 我们测量了表面引发的杂交链式反应的动力学过程, 并获得界面上的粘度、剪切模量等参数. 这一工作为研究固液界面上核酸反应过程, 特别是杂交链式反应的机制提供了新的途径.

本文引用格式

王萍 , 葛志磊 , 裴昊 , 王丽华 , 樊春海 . 表面引发的DNA杂交链式反应的石英晶体微天平研究[J]. 化学学报, 2012 , 70(20) : 2127 -2132 . DOI: 10.6023/A12080499

Abstract

The hybridization chain reaction (HCR), a type of nucleic acid amplification method, was studied by a quartz crystal resonator technique. We probed the properties of the boundary DNA layer with a thickness of the viscous penetration depth at the crystal-solution interface. According to the relationship between the change of resonant frequency and the mass adsorbed on the crystal surface, the kinetics of surface-initiated HCR was measured, as well as the viscosity and the shear modulus of H1/H2 solution with different concentrations near a solid substrate. This work provides a new method for studying nucleic acid reactions at solid surface and mechanistic insight for HCR-based amplification and biodetection.

参考文献

[1] Choi, H. M. T.; Chang, J. Y.; Trinh, L. A.; Padilla, J. E.; Fraser, S. E.; Pierce, N. A. Nat. Biotechnol. 2010, 28, 1208.

[2] Venkataraman, S.; Dirks, R. M.; Rothemund, P. W. K.; Winfree, E.; Pierce, N. A. Nat. Nanotechnol. 2007, 2, 490.

[3] Venkataraman, S.; Dirks, R. M.; Ueda, C. T.; Pierce, N. A. Proc. Natl. Acad. Sci. 2010, 107, 16777.

[4] Dirks, R. M.; Pierce, N. A. Proc. Natl. Acad. Sci. 2004, 101, 15275.

[5] Green, S. J.; Lubrich, D.; Turberfield, A. J. Biophys. J. 2006, 91, 2966.

[6] Lubrich, D.; Green, S. J.; Turberfield, A. J. J. Am. Chem. Soc. 2009, 131, 2422.

[7] Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.; Simmel, F. C. Phys. Rev. Lett. 2003, 90, 118102.

[8] Niu, S.; Jiang, Y.; Zhang, S. Chem. Commun. 2010, 46, 3089.

[9] Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat. Mater. 2005, 4, 826.

[10] Bath, J.; Green, S. J.; Allen, K. E.; Turberfield, A. J. Small 2009, 5, 1513.

[11] McKee, M. L.; Milnes, P. J.; Bath, J.; Stulz, E.; Turberfield, A. J.; O'Reilly, R. K. Angew. Chem. Int. Ed. 2010, 49, 7948.

[12] Muscat, R. A.; Bath, J.; Turberfield, A. J. Nano Lett. 2011, 11, 982.

[13] Turberfield, A. J. Nat. Chem. 2011, 3, 580.

[14] Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.; Medintz, I. L. J. Am. Chem. Soc. 2009, 131, 3828.

[15] Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem., Int. Ed. 2009, 48, 8670.

[16] Zhang, J.; Song, S. P.; Wang, L. H.; Pan, D.; Fan, C. H. Nat.. Protoc. 2007, 2, 2888.

[17] Liu, G.; Wan, Y.; Zou, Z.; Ren, S.; Fan, C. Chin. J. Anal. Chem. 2011, 39, 953 (in Chinese).

[18] Yan, J.; Hu, M.; Li, D.; He, Y.; Zhao, R.; Jiang, X.; Song, S.; Wang, L.; Fan, C. Nano Res. 2008, 1, 490.

[19] Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem. Int. Ed. 2009, 48, 8670.

[20] Yan, J.; Song, S.; Li, B.; Zhang, Q.; Huang, Q.; Zhang, H.; Fan, C. Small 2010, 6, 2520.

[21] Fan, C.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J. Proc. Natl. Acad. Sci. 2003, 100, 6297.

[22] He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.

[23] Gerdon, A. E.; Wright, D. W.; Cliffel, D. E. Anal. Chem. 2004, 77, 304.

[24] Wang, P.; Fang, J.; Hou, Y.; Du, X.; Zhu, D.-M. J. Phys. Chem. C 2008, 113, 729.

[25] Wang, P.; Fang, J.; Qin, S.; Kang, Y.; Zhu, D.-M. J. Phys. Chem. C 2009, 113, 13793.

[26] Wu, B.; Wu, K.; Wang, P.; Zhu, D.-M. J. Phys. Chem. C 2006, 111, 1131.

[27] Rodahl, M.; Kasemo, B. Sens. Actuators, A 1996, 54, 448.

[28] Johannsmann, D.; Reviakine, I.; Rojas, E.; Gallego, M. Anal. Chem. 2008, 80, 8891.

[29] Voinova, M. V.; Rodahl, M.; Jonson, M.; Kasemo, B. Phys. Scr. 1999, 59, 391.

[30] Kanazawa, K. K.; Gordon, J. G. Anal. Chem. 1985, 57, 1770.

[31] Hook, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sott, K.; Elwing, H. Anal. Chem. 2001, 73, 5796.

[32] Kitano, K.; Inoue, Y.; Matsuno, R.; Takai, M.; Ishihara, K. Colloids Surf., B 2009, 74, 350.

[33] Amstad, E.; Zurcher, S.; Mashaghi, A.; Wong, J. Y.; Textor, M.; Reimhult, E. Small 2009, 5, 1334.

[34] Cho, N.-J.; Frank, C. W.; Kasemo, B.; Hook, F. Nat. Protoc. 2010, 5, 1096.

[35] Edvardsson, M.; Svedhem, S.; Wang, G.; Richter, R.; Rodahl, M.; Kasemo, B. Anal. Chem. 2008, 81, 349.

[36] Gran閘i, A.; Rydström, J.; Kasemo, B.; Höök, F. Langmuir 2003, 19, 842.

[37] Reimhult, E.; Zäch, M.; Höök, F.; Kasemo, B. Langmuir 2006, 22, 3313.

[38] Höök, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Langmuir 1998, 14, 729.

[39] Arlett, J. L.; Myers, E. B.; Roukes, M. L. Nat. Nanotechnol. 2011, 6, 203.

[40] Gavutis, M.; Lata, S.; Piehler, J. Nat. Protoc. 2006, 1, 2091.

[41] Thierry, B.; Jasieniak, M.; de Smet, L. C. P. M.; Vasilev, K.; Griesser, H. J. Langmuir 2008, 24, 10187.

[42] Braun, T.; Ghatkesar, M. K.; Backmann, N.; Grange, W.; Boulanger, P.; Letellier, L.; Lang, H.-P.; Bietsch, A.; Gerber, C.; Hegner, M. Nat. Nanotechnol. 2009, 4, 179.

[43] Federici, S.; Oliviero, G.; Hamad-Schifferli, K.; Bergese, P. Nanoscale 2010, 2, 2570.

[44] Choi, S.; Yang, Y.; Chae, J. Biosens. Bioelectron. 2008, 24, 893.

[45] Pei, H.; Lu, N.; Wen, Y.; Song, S.; Liu, Y.; Yan, H.; Fan, C. Adv. Mater. 2010, 22, 4754.

[46] Sauerbrey, G. Z Phys. 1959, 155, 206.

[47] Gerdon, A. E.; Wright, D. W.; Cliffel, D. E. Anal. Chem. 2005, 77, 304.

[48] Zhu, D.-M.; Wu, K.; Wu, B.; Wang, P.; Fang, J.; Hou, Y.; Zhang, G. J. Phys. Chem. C 2007, 111, 18679.

[49] Rodahl, M.; Hook, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Rev. Sci. Instrum. 1995, 66, 3924.
文章导航

/