研究论文

Keggin型杂多酸铯盐催化苯羟基化反应

  • 冯素姣 ,
  • 张丽 ,
  • 任远航 ,
  • 岳斌 ,
  • 叶林 ,
  • 汪玉 ,
  • 陈雪莹 ,
  • 贺鹤勇
展开
  • 复旦大学化学系 上海市分子催化和功能材料重点实验室 上海 200433

收稿日期: 2012-07-09

  网络出版日期: 2012-09-23

基金资助

受国家重点基础研究发展规划项目(No. 2009CB623506), 国家自然科学基金(No. 21173050), 上海市优秀学科带头人计划(No. 10XD1400300)及上海市重点学科建设项目(B108)资助.

Catalytic Hydroxylation of Benzene to Phenol with Hydrogen Peroxide over Cesium Salts of Keggin-type Heteropoly Acids

  • Feng Sujiao ,
  • Zhang Li ,
  • Ren Yuanhang ,
  • Yue Bin ,
  • Ye Lin ,
  • Wang Yu ,
  • Chen Xueying ,
  • He Heyong
Expand
  • Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433

Received date: 2012-07-09

  Online published: 2012-09-23

Supported by

Project supported by the National Basic Research Program of China (No. 2009CB623506), the National Natural Science Foundation of China (No. 21173050), the Program of Shanghai Subject Chief Scientist (No. 10XD1400300) and Shanghai Leading Academic Discipline Project (B108).

摘要

采用室温固相法制备了具有Keggin结构的杂多酸铯盐催化剂(CsxH3+n-xPMo12-nVnO40, n=0, 1, 2, x=0.5~3.0). 红外、X射线粉末衍射及循环伏安技术研究显示, 钒取代钼原子可提高催化剂的氧化还原性, 铯取代数的增加可提高催化剂的疏水性但降低氧化还原性. 在H2O2为氧化剂的苯羟基化反应中, 随着铯取代数目的增加, 催化剂的溶脱情况得到明显改善. 在氧化还原性和疏水性协同作用下, Cs2H3PMo10V2O40在CsxH3+n-xPMo12-nVnO40系列催化剂中显示出相对最佳的苯羟基化催化活性(苯酚收率19.2%)和重复使用性能.

关键词: 杂多酸; 铯盐; ; 羟基化; 苯酚

本文引用格式

冯素姣 , 张丽 , 任远航 , 岳斌 , 叶林 , 汪玉 , 陈雪莹 , 贺鹤勇 . Keggin型杂多酸铯盐催化苯羟基化反应[J]. 化学学报, 2012 , 70(22) : 2316 -2322 . DOI: 10.6023/A12070397

Abstract

Three series of cesium salts of Keggin-type heteropoly acids (CsxH3+n-xPMo12-nVnO40, n=0, 1, 2, x=0.5~3.0) prepared by a solid synthesis method have been employed in the catalytic hydroxylation of benzene to phenol with H2O2. The effects of vanadium substitution number and cesium content on the catalytic activity, redox ability and hydrophobicity of the catalysts were studied. Cs2H3PMo10V2O40 exhibits high phenol yield (19.2%) and good reusability among the CsxH3+n-x- PMo12-nVnO40 catalysts.

参考文献

[1] Balducci, L.; Bianchi, D.; Bortolo, R.; D'Aloisio, R.; Ricci, M.; Tassinari, R.; Ungarelli, R. Angew. Chem., Int. Ed. 2003, 42, 4937.
[2] Barbera, D.; Cavani, F.; D'Alessandro, T.; Fornasari, G.; Guidetti, S.; Aloise, A.; Giordano, G.; Piumetti, M.; Bonelli, B.; Zanzottera, C. J. Catal. 2010, 275, 158.
[3] Choi, J. S.; Kim, T. H.; Choo, K. Y.; Sung, J. S.; Saidutta, M. B.; Ryu, S. O.; Song, S. D.; Ramachandra, B.; Rhee, Y. W. Appl. Catal. A: Gen. 2005, 290, 1.
[4] Liu, Y. Y.; Murata, K.; Inaba, M. Catal. Commun. 2005, 6, 679.
[5] Niwa, S.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. Science 2002, 295, 105.
[6] Panov, G. I.; Uriarte, A. K.; Rodkin, M. A.; Sobolev, V. I. Catal. Today 1998, 41, 365.
[7] Tanarungsun, G.; Kiatkittipong, W.; Praserthdam, P.; Yamada, H.; Tagawa, T.; Assabumrungrat, S. Catal. Commun. 2008, 9, 1886.
[8] Feng, S. J.; Pei, S. P.; Yue, B.; Ye, L.; Qian, L. P.; He, H. Y. Catal. Lett. 2009, 131, 458.
[9] Feng, S. J.; Yue, B.; Wang, Y.; Ye, L.; He, H. Y. Acta Phys. Chim. Sin. 2011, 27, 2881.
[10] Benaissa, H.; Davey, P. N.; Khimyak, Y. Z.; Kozhevnikov, I. V. J. Catal. 2008, 253, 244.
[11] Chen, J. Q.; Gao, S.; Xu, J. Catal. Commun. 2008, 9, 728.
[12] Okuhara, T. Catal. Today 2002, 73, 167.
[13] Sharma, P.; Vyas, S.; Patel, A. J. Mol. Catal. A: Chem. 2004, 214, 281.
[14] Tani, M.; Sakamoto, T.; Mita, S.; Sakaguchi, S.; IshⅡ, Y. Angew. Chem., Int. Ed. 2005, 44, 2586.
[15] Dimitratos, N.; Vedrine, J. C. Appl. Catal. A: Gen. 2003, 256, 251.
[16] Leng, Y.; Wang, J.; Zhu, D. R.; Ren, X. Q.; Ge, H. Q.; Shen, L. Angew. Chem. Int. Ed. 2009, 48, 168.
[17] Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171.
[18] Zhang, J.; Tang, Y.; Li, G. Y.; Hu, C. Appl. Catal. A: Gen. 2005, 278, 251.
[19] Rao, K. T. V.; Rao, P. S. N.; Nagaraju, R.; Prasad, P. S. S.; Lingaiah, N. J. Mol. Catal. A: Chem. 2009, 303, 84.
[20] Narasimharao, K.; Brown, D. R.; Lee, A. F.; Newman, A. D.; Siril, P. F.; Tavener, S. J.; Wilson, K. J. Catal. 2007, 248, 226.
[21] Okuhara, T.; Mizuno, N.; Misono, M. Appl. Catal. A: Gen. 2001, 222, 63.
[22] Kimura, M.; Nakato, T.; Okuhara, T. Appl. Catal. A: Gen. 1997, 165, 227.
[23] Dimitratos, N.; Vedrine, J. C. Catal. Today 2003, 81, 561.
[24] Knapp, C.; Ui, T.; Nagai, K.; Mizuno, N. Catal. Today 2001, 71, 111.
[25] Marchal-Roch, C.; Laronze, N.; Guillou, N.; Teze, A.; Herve, G. Appl. Catal. A: Gen. 2000, 199, 33.
[26] Kuznetsova, L. I.; Detusheva, L. G.; Kuznetsova, N. I.; Koshcheev, S. V.; ZaikovskⅡ, V. I.; Chesalov, Y. A.; Rogov, V. A.; Fenelonov, V. B.; Likholobov, V. A. Kinet. Catal. 2009, 50, 205.
[27] Villabrille, P.; Romanelli, G.; Vazquez, P.; Caceres, C. Appl. Catal. A: Gen. 2004, 270, 101.
[28] Yamaguchi, S.; Sumimoto, S.; Ichihashi, Y.; Nishiyama, S.; Tsuruya, S. Ind. Eng. Chem. Res. 2005, 44, 1.
[29] Guo, X. J.; Huang, C. P.; Li, Y. X. Korean J. Chem. Eng. 2008, 25, 697.
[30] Matachowski, L.; Zieba, A.; Zembala, M.; Drelinkiewicz, A. Catal. Lett. 2009, 133, 49.
[31] Wang, R.; Yu, F. L.; Zhang, G. F.; Zhao, H. X. Catal. Today 2010, 150, 37.
[32] Na, K.; Okuhara, T.; Misono, M. Chem. Lett. 1993, 1141.
[33] Tatematsu, S.; Hibi, T.; Okuhara, T.; Misono, M. Chem. Lett. 1984, 865.
[34] Zou, Y.; Yue, B.; Zhang, B.; He, H. Y. Chem. Lett. 2006, 35, 202.
[35] Zhou, Y.; Yue, B.; Bao, R. L.; Liu, S. X.; He, H. Y. Chin. J. Chem. 2006, 24, 1001.
[36] Tsigdinos, G. A.; Hallada, C. J. Inorg. Chem. 1968, 7, 437.
[37] Okuhara, T.; Mizuno, N.; Misono, M. In Advances in Catalysis, Vol. 41, Eds.: Eley, D. D.; Haag, W. O.; Gates, B., Academic Press Inc, San Diego, 1996, pp. 113—252.
[38] Rocchicciolideltcheff, C.; Fournier, M. J. Chem. Soc. 1991, 87, 3913.
[39] Lee, J. K.; Melsheimer, J.; Berndt, S.; Mestl, G.; Schlogl, R.; Kohler, K. Appl. Catal. A: Gen. 2001, 214, 125.
[40] Essayem, N.; Holmqvist, A.; Gayraud, P. Y.; Vedrine, J. C.; Ben Taarit, Y. J. Catal. 2001, 197, 273.
[41] Berndt, S.; Herein, D.; Zemlin, F.; Beckmann, E.; Weinberg, G.; Schutze, J.; Mestl, G.; Schlogl, R. Phys. Chem. Chem. Phys. 1998, 102, 763.
[42] Langpape, M.; Millet, J. M. M.; Ozkan, U. S.; Boudeulle, M. J. Catal. 1999, 181, 80.
[43] Dai, L. M.; You, W. S.; Li, Y. G.; Wang, E. B.; Qi, L. J.; Tang, J.; Bai, X. L. Inorg. Chem. Commun. 2010, 13, 421.
[44] Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219.
[45] Sha, J.; Peng, J.; Liu, H.; Chen, J.; Dong, B.; Tian, A.; Su, Z. Eur. J. Inorg. Chem. 2007, 1268.
[46] Villabrille, P.; Romanelli, G.; Gassa, L.; Vazquez, P.; Caceres, C. Appl. Catal. A: Gen. 2007, 324, 69.
[47] Song, I. K.; Barteau, M. A. J. Mol. Catal. A: Chem. 2004, 212, 229.
[48] Ai, M. Appl. Catal. 1982, 4, 245.
[49] Li, X. K.; Zhao, J.; Ji, W. J.; Zhang, Z. B.; Chen, Y.; Au, C. T.; Han, S.; Hibst, H. J. Catal. 2006, 237, 58.
[50] Mestl, G.; Ilkenhans, T.; Spielbauer, D.; Dieterle, M.; Timpe, O.; Krohnert, J.; Jentoft, F.; Knozinger, H.; Schlogl, R. Appl. Catal. A: Gen. 2001, 210, 13.
[51] Okuhara, T. Chem. Rev. 2002, 102, 3641.
[52] Ilkenhans, T.; Herzog, B.; Braun, T.; Schlogl, R. J. Catal. 1995, 153, 275.
[53] Lemke, K.; Ehrich, H.; Lohse, U.; Berndt, H.; Jahnisch, K. Appl. Catal. A: Gen. 2003, 243, 41.
[54] Chen, J. Q.; Gao, S.; Xu, J. Catal. Commun. 2008, 9, 728.
[55] Kharat, A. N.; Moosavikia, S.; Jahromi, B. T.; Badiei, A. J. Mol. Catal. A: Chem. 2011, 348, 14.
[56] Song, S. Q.; Yang, H. X.; Rao, R. C.; Liu, H. D.; Zhang, A. M. Appl. Catal. A: Gen. 2010, 375, 265.
[57] Zhu, Y. J.; Dong, Y. L.; Zhao, L. N.; Yuan, F. L. J. Mol. Catal. A: Chem. 2010, 315, 205.
[58] Joseph, J. K.; Singhal, S.; Jain, S. L.; Sivakumaran, R.; Kumar, B.; Sain, B. Catal. Today 2009, 141, 211.
文章导航

/