研究论文

负载型TiO2/SBA-15的制备及其光催化还原CO2性能

  • 王会香 ,
  • 姜东 ,
  • 吴东 ,
  • 李德宝 ,
  • 孙予罕
展开
  • a 中国科学院山西煤炭化学研究所 煤转化国家重点实验室 太原 030001;
    b 中国科学院大学 北京 100049

收稿日期: 2012-07-26

  网络出版日期: 2012-11-02

基金资助

项目受国家自然科学基金(No. 21003150);山西省自然科学基金(No. 2011011006-2)和煤转化国家重点实验室自主研究项目(No. 2011BWZ011)资助.

Synthesis of Supported TiO2/SBA-15 Catalysts and Their Performance on Photocatalytic Reduction of CO2

  • Wang Huixiang ,
  • Jiang Dong ,
  • Wu Dong ,
  • Li Debao ,
  • Sun Yuhan
Expand
  • a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2012-07-26

  Online published: 2012-11-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21003150), the Natural Science Foundation of Shanxi Province (No. 2011011006-2) and Independent Research Foundation of the State Key Laboratory of Coal Conversion (No. 2011BWZ011).

摘要

以羧基改性的SBA-15 (COOH/SBA-15)和钛酸四丁酯(TB)为原料, 利用COOH/SBA-15表面上高分散的大量羧基将TB锚定, 通过溶剂热处理得到高分散负载型TiO2/SBA-15催化剂. 产物经XRD, Raman, FT-IR, TEM, N2吸脱附和UV-Vis表征, 结果显示: 所制备的TiO2/SBA-15催化剂为比表面大、结晶度较高的锐钛矿TiO2, TiO2均匀分散于SBA-15表面, 此外, COOH/SBA-15有效抑制了TiO2晶粒的长大. 以光催化还原CO2为探针反应, 考察了TiO2/SBA-15催化剂在紫外光照射下的光催化性能. 结果表明: 相比于后处理浸渍法制备的光催化剂, 本文制备的TiO2/SBA-15催化剂表现出了高的光催化还原CO2活性, 主要产物为甲醇, 且TiO2最佳负载量为16.5%, 并对相关反应机理做了探讨.

本文引用格式

王会香 , 姜东 , 吴东 , 李德宝 , 孙予罕 . 负载型TiO2/SBA-15的制备及其光催化还原CO2性能[J]. 化学学报, 2012 , 70(23) : 2412 -2418 . DOI: 10.6023/A12070472

Abstract

TiO2/SBA-15 catalysts, TiO2 nanoparticles well dispersed on SBA-15 supporter, have been successfully obtained through a self-assembly aging, carboxylation and subsequent solvothermal process. Firstly, P123 (PEG-PPG-PEG), KCl, (2-cyanoethyl) triethoxysilane (CETES) and tetraethoxysilane (TEOS) were employed to form cyano-modified SBA-15 (CN/SBA-15) in 2.0 mol/L HCl solution by self-assembly aging method. Secondly, carboxyl-modified SBA-15 (COOH/SBA-15) was got through carboxylation treatment in 48% H2SO4 solution at 95℃ for 24 h. Finally, highly dispersed TiO2/SBA-15 catalysts were successfully synthesized via solvothermal method at 220℃ for 12 h using COOH/SBA-15 and tetrabutyl titanate (TB) as raw materials. In order to remove the organic compounds and improve the crystallization of TiO2, the obtained TiO2/SBA-15 catalysts then were filtrated, washed by absolute ethanol for three times, dried at 80℃ and calcined at 550℃ for 4 h. Notably, the self-assembly and carboxylation process produced large number of good dispersive carboxyl groups (COOH) on SBA-15, which could effectively anchored TB molecules on SBA-15 to promise the highly dispersion of TiO2 on SBA-15. The obtained TiO2/SBA-15 catalysts have been characterized by X-ray diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), nitrogen adsorption and UV-Visible diffuse reflectance spectroscopy (UV-Vis). Above results indicate that the TiO2/SBA-15 catalysts exhibit large specific surface area and TiO2 on SBA-15 supporter is anatase phase, they are both play important roles in photocatalytic application. In the current manuscript, the photocatalytic reduction of CO2 under UV light irradiation as a prober reaction was used to investigate the photocatalytic performance of TiO2/SBA-15 catalysts. It was found that the obtained catalysts performed high photocatalytic capacity for CO2 reduction, especially when the loading amount of TiO2 was around 16.5 wt% [n(COOH)/n(TB)=3], the methanol production got maximum which could reach 80 μmol/g-catalyst after 6 h UV light irradiation. Compared with the catalysts which synthesized through simple impregnation method, our TiO2/SBA-15 catalysts showed the higher activity in photocatalytic reduction of CO2, owing to the better dispersion and crystallization.

参考文献

[1] Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. J. Electroanal. Chem. 1995, 396, 21.
[2] Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacny, Z.; Jirkovsky, J.; Šolcová, O. Appl. Catal., B 2009, 89, 494.
[3] Li, Y.; Wang, W. N.; Zhan, Z.; Woo, M. H.; Wu, C. Y.; Biswas, P. Appl. Catal., B 2010, 100, 386.
[4] Metz, B.; Davidson, O.; Coninck, H. D.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage, Cambridge University Press, UK, 2005, p. 105.
[5] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637.
[6] Yamashita, H.; Kamade, N.; He, H. Chem. Lett. 1994, 855.
[7] Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T. J. Photochem. Photobiol., A 1998, 115, 223.
[8] Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Chem. Commun. 2004, 1234.
[9] Kočí, K.; Matějka, V.; Ková?, P.; Lacny, Z.; Obalová, L. Catal. Today 2011, 161, 105.
[10] Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. J. Am. Chem. Soc. 2011, 133, 3964.
[11] Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L. Carbon 2007, 45, 717.
[12] Jung, W. Y.; Lee, G. D.; Park, S. S.; Lim, K. T.; Lee, M. S.; Hong, S. S. J. Nanosci. Nanotechnol. 2011, 11, 7446.
[13] Wang, W.; Song, M. J. Non-Cryst. Solids 2006, 352, 3153.
[14] Yang, J.; Zhang, J.; Zhu, L. W.; Chen, S. Y.; Zhang, Y. M.; Tang, Y.; Zhu, Y. L.; Li, Y. W. J. Hazard. Mater. 2006, 137, 952.
[15] Lachheb, H.; Ahmed, O.; Houas, A.; Nogier, J. P. J. Photochem. Photobiol., A 2011, 226, 1.
[16] Perathoner, S.; Lanzafame, P.; Passalacqua, R.; Centi, G.; Schl?gl, R.; Su, D. S. Microporous Mesoporous Mater. 2006, 90, 347.
[17] Grieken, R. V.; Aguado, J.; López-Mu?oz, M. J.; Marugán, J. J. Photochem. Photobiol., A 2002, 148, 315.
[18] Sazo, V.; López, C. M.; Quesada, M. D.; Vieira, J. M. Catal. Today 2011, 172, 8.
[19] Li, G.; Zhao, X. S. Ind. Eng. Chem. Res. 2006, 45, 3569.
[20] Zhao, L.; Yu, J. G. J. Colloid Interface Sci. 2006, 304, 84.
[21] Acosta-Silva, Y. J.; Nava, R.; Hernández-Morales, V.; Macías- Sánchez, S. A.; Gómez-Herrera, M. L.; Pawelec, B. Appl. Catal., B 2011, 110, 108.
[22] Zhang, S. C.; Jiang, D.; Tang, T.; Li, J. H.; Xu, Y. Acta Phys.-Chim. Sin. 2010, 26, 1330. (张书翠, 姜东, 唐涛, 李君华, 徐耀, 物理化学学报, 2010, 26, 1330.)
[23] Xu, W. J.; Gao, Q.; Xu, Y.; Wu, D.; Sun, Y. H.; Shen, W. L.; Deng, F. J. Solid State Chem. 2008, 181, 2837.
[24] Zhang, S. C.; Jiang, D.; Tang, T.; Li, J. H.; Xu, Y.; Shen, W. L.; Xu, J.; Deng, F. Catal. Today 2010, 158, 329.
[25] Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Eur. J. Inorg. Chem. 2008, 1236.
[26] Jung, W. Y.; Noh, B. H.; Baek, S. H.; Lee, G. D.; Park, S. S.; Hong, S. S. React. Kinet. Catal. Lett. 2007, 91, 223.
[27] Jiang, D.; Xu, Y.; Wu, D.; Sun, Y. H. J. Solid State Chem. 2008, 181, 593.
[28] Qiao, W. T.; Zhou, G. W.; Zhang, X. T.; Li, T. D. Mater. Sci. Eng., C 2009, 29, 1498.
[29] Dutoit, D. C. M.; Schneider, M.; Baiker, A. J. Catal. 1995, 153, 165.
[30] Li, Z. J.; Hou, B.; Xu, Y.; Wu, D.; Sun, Y. H.; Hu, W.; Deng, F. J. Solid State Chem. 2005, 178, 1395.
[31] Wang, W.; Song, M. Microporous Mesoporous Mater. 2006, 96, 255.
[32] Sahu, D. R.; Hong, L. Y.; Wang, S. C.; Huang, J. L. Microporous Mesoporous Mater. 2009, 117, 640.
[33] Xu, W. J. Ph.D. Dissertation, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 2008. (徐武军, 博士论文, 中国科学院山西煤炭化学研究所, 太原, 2008.)
[34] Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. J. Am. Chem. Soc. 2011, 133, 16414.
[35] Morgan, B. J.; Watson, G. W. J. Phys. Chem. C 2010, 114, 2321.
[36] Walle, L. E.; Borg, A.; Johansson, E. M. J.; Plogmaker, S.; Rensmo, H.; Uvdal, P.; Sandell, A. J. Phys. Chem. C 2011, 115, 9545.
[37] Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M. Res. Chem. Intermed. 1994, 20, 815.
[38] Asi, M. A.; He, C.; Su, M. H.; Xia, D. H.; Lin, L.; Deng, H. Q.; Xiong, Y. Catal. Today 2011, 175, 256.
文章导航

/