研究论文

微乳液法合成沸石/介孔二氧化硅复合微球

  • 孙博 ,
  • 郭勇 ,
  • 徐乐 ,
  • 黄哲昊 ,
  • 吴鹏 ,
  • 车顺爱
展开
  • a 上海交通大学化学化工学院 金属基复合材料国家重点实验室 上海 200240;
    b 华东师范大学化学系 上海市绿色化学与化工过程绿色化重点实验室 上海 200062

收稿日期: 2012-08-09

  网络出版日期: 2012-11-05

基金资助

项目受国家自然科学基金(Nos. 20890121, 20925310, U1162102)以及科技部973项目基金(Nos. 2009CB930403, 2012BAE05B02)资助.

Synthesis of Zeolite/Mesoporous Silica Composite Microspheres by Microemulsion Method

  • Sun Bo ,
  • Guo Yong ,
  • Xu Le ,
  • Huang Zhehao ,
  • Wu Peng ,
  • Che Shunai
Expand
  • a School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240;
    b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062

Received date: 2012-08-09

  Online published: 2012-11-05

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20890121, 20925310 and U1162102) and Ministry of Science and Technology (Nos. 2009CB930403 and 2012BAE05B02).

摘要

利用简单微乳液自组装体系, 制备了介孔二氧化硅与Y型或Ti-MWW沸石晶体复合形成的沸石/介孔二氧化硅微球(ZMMS). 硅源正硅酸四丁酯与阳离子型季铵盐表面活性剂形成稳定的O/W微乳液形成大颗粒, 沸石颗粒由于疏水作用而进入油相, 同时, 季铵盐表面活性剂和正硅酸四丁酯组装形成介孔材料. 优化合成条件可以有效控制复合微球的沸石/介孔二氧化硅质量比(0~2.3)和直径(186~965 μm). 两种沸石/介孔二氧化硅复合微球材料的介孔孔径分别为3.98 nm(Y型沸石)和3.75 nm (Ti-MWW型沸石). Ti-MWW沸石/介孔二氧化硅复合微球在液相催化环氧化反应中表现出良好的机械强度, 并且能够达到与Ti-MWW沸石原粉相当的催化活性.

本文引用格式

孙博 , 郭勇 , 徐乐 , 黄哲昊 , 吴鹏 , 车顺爱 . 微乳液法合成沸石/介孔二氧化硅复合微球[J]. 化学学报, 2012 , 70(23) : 2419 -2424 . DOI: 10.6023/A12080533

Abstract

Zeolite/mesoporous silica composite microspheres (ZMMS) have been prepared by self-assembling mesoporous silica phase with Y or Ti-MWW zeolites crystallites in a simple microemulsion system. The synthesis process involved the formation of a stable O/W microemulsion from silica precursor of tetrabutyl orthosilicate and cationic quaternary ammonium surfactants as well as a simultaneous assembling of zeolite into the oil phase by their hydrophobic interaction, in which mesoporous silica was formed by self-assembling of surfactant and silica source. Through optimizing synthesis conditions, the ZMMS materials were prepared to possess controllable mass ratio of zeolite to mesoporous silica (0—2.3) and sphere diameter (186—965 μm). The mesopore sizes of the ZMMSs were 3.75 (zeolite-Y/MMSs) and 3.98 nm (Ti-MWW/MMSs). In the liquid-phase ammoximation of cyclohexanone, Ti-MWW/mesoporous silica microspheres showed a high mechanical stability and a catalytic activity comparable to the parent Ti-MWW powders.

参考文献

[1] Szostak, R. Molecular Sieves, Black Academic & Professional, London, 1998.
[2] Flanigen, E. M.; Jacobs, P. A.; Jansen, J. C. Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, 2001.
[3] Corma, A. Chem. Rev. 1995, 95, 559.
[4] Li, L.; Wang, K. X.; Chen, J. S. Angew. Chem., Int. Ed. 2011, 50, 8299.
[5] Carati, A.; Bellussi, G.; Mantegazza, M. A.; Petrini, G. US187096, 2005.
[6] Serrano, D. P.; Sanz, R.; Pizarro, P.; Moreno, I.; Blázquez, S. Catal. Today 2009, 143, 151.
[7] Shan, Z. C.; Lu, Z. D.; Wang, L.; Zhou, C.; Ren, L. M.; Zhang, L.; Meng, X. J.; Ma, S. J.; Xiao, F. S. ChemCatChem 2010, 2, 407.
[8] Itani, L.; Valtchev, V.; Patarin, J.; Rigolet, S.; Gao, F. F.; Baudin, G. Microporous Mesoporous Mater. 2011, 138, 157.
[9] Choudhary, V. R.; Devadas, P.; Kinage, A. K.; Guisnet, M. Appl. Catal. A 1997, 162, 223.
[10] M鰈ler, K.; Yilmaz, B.; Jacubinas, R. M.; M黮ler, U.; Bein, T. J. Am. Chem. Soc. 2011, 133, 5284.
[11] Wang, Z. D.; Liu, Y. M.; Jiang, J. J.; He, M. Y.; Wu, P. J. Mater. Chem. 2010, 20, 10193.
[12] Jung, K. T.; Shul, Y. G. Microporous Mesoporous Mater. 1998, 21, 281.
[13] Uguina, M. A.; Serrano, D. P.; Ovejero, G.; Camacho, M. Appl. Catal. A 1995, 124, 391.
[14] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C. (Mobil Oil Corporation), EP0512026, 1992.
[15] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
[16] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem., Int. Ed. 1999, 38, 56.
[17] Wan, Y.; Zhao, D. Y. Chem. Rev. 2007, 107, 2821.
[18] Inui, T.; Kim, J.; Seno, M. Catal. Lett. 1994, 29, 271.
[19] Huang, L. M.; Guo, W. P.; Deng, P.; Xue, Z. Y.; Li, Q. Z. J. Phys. Chem. B 2000, 104, 2817.
[20] Xia, Y.; Mokaya, R. J. Mater. Chem. 2004, 14, 863.
[21] (a) Guo, W.; Xiong, C.; Huang, L.; Li, Q. J. Mater. Chem. 2001, 11, 1886;
(b) Huang, L.; Deng, P.; Xue, Z.; Li, Q. Microporous Mesoporous Mater. 2001, 44, 427.
[22] (a) Liu, Y.; Pinnavaia, T. J. J. Am. Chem. Soc. 2000, 122, 8791;
(b) Zhang, Z.; Zhao, D.; Wen, Y. J. Am. Chem. Soc. 2001, 123, 5014;
(c) On, D. T.; Kaliaguine, S. Angew. Chem., Int. Ed. 2002, 41, 1036.
[23] Xue, Z. T.; Ma, J. H.; Zhang, T.; Miao, H. X.; Li, R. F. Mater. Lett. 2012, 68, 1.
[24] Dong, A. G.; Tang, Y.; Ren, N.; Gao, Z. Chem. Mater. 2002, 14, 3217.
[25] Valtchev, V. Chem. Mater. 2002, 14, 4371.
[26] Qian, X.; Li, B.; Zhao, D. Y. Chem. Eur. J. 2011, 18, 931.
[27] Han, Y.; Zhao, L.; Ying, J. Y. Small 2011, 3, 326.
[28] Peng, H.; Xu, L.; Wu, H.; Wang, Z.; He, M.; Wu, P. Microporous Mesoporous Mater. 2012, 153, 8.
[29] Pires, E. L.; Wallau, M.; Schuchardt, U. J. Mol. Catal. A: Chem. 1998, 136, 69.
[30] Weitkamp, J.; Ernst, S.; G黱zel, B.; Deckwer, W.-D. Zeolites 1991, 11, 314.
[31] Matsui, M.; Kiyozumi, Y.; Yamamoto, T.; Mizushina, Y.; Mizukami, F.; Sakaguchi, K. Chem. Eur. J. 2001, 7, 1555.
[32] Anderson, K. R.; Obey, T. M.; Vincent, B. Langmuir 1994, 10, 2493.
[33] Mun, S.; Decker, E. A.; McClements, D. J. Langmuir 2005, 21, 6228.
[34] Kim, J. W.; Lee, D.; Shum, H. C.; Weitz, D. A. Adv. Mater. 2008, 20, 3239.
[35] Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B 2001, 105, 2897.
文章导航

/