研究通讯

钯催化苯乙烯类分子胺氟化反应研究

  • 朱海涛 ,
  • 刘国生
展开
  • 金属有机化学国家重点实验室 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2012-10-29

  网络出版日期: 2012-11-12

基金资助

项目受科技部973 (No. 2009CB825300);国家自然科学基金(Nos. 0972175, 20923005)和上海市科委(No. 11JC1415000)资助.

Palladium-Catalyzed Oxidative Aminofluorination of Styrenes

  • Zhu Haitao ,
  • Liu Guosheng
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2012-10-29

  Online published: 2012-11-12

Supported by

Project supported by the 973 Program of China (No. 2009CB825300), the National Natural Science Foundation of China (Nos. 20972175, 20923005), and the Science and Technology Commission of the Shanghai Municipality (No. 11JC1415000).

摘要

报道了烯烃分子间的氧化双官能团化反应, 用金属钯作为金属催化剂, 三价碘为氧化剂, 氟化银为氟源, 磺酰胺类为亲核试剂, 实现了苯乙烯的分子间胺氟化反应, 得到α-F代苯乙胺类化合物; 反应是经过烯烃的反马氏氮钯化得到碳钯键, 再经过三价碘氧化成高价钯的中间体来形成C—F键, 在分子中的特定位置引入氟原子. 该反应的一个特点是选择性地得到反马氏胺氟产物.

本文引用格式

朱海涛 , 刘国生 . 钯催化苯乙烯类分子胺氟化反应研究[J]. 化学学报, 2012 , 70(23) : 2404 -2407 . DOI: 10.6023/A12100835

Abstract

A novel palladium-catalyzed intermolecular aminofluorination of styrenes has been developed, using silver fluoride as the fluorine source, palladium diacetate as metal catalyst, and acetonitrile as solvent at room temperature. As regard to the mechanism, we proposed that the anti-Markovnikov aminopalladation was involved in the construction of C—N bond. This selectivity of nucleophilic palladation of styrenes is different from that reported before. In order to verify our proposed mechanism, we conducted the competition experiments using styrenes containing different functional groups. The results are consistent with our analysis. We belive that the C—F bond is formed after the Pd(II)-C is oxidized to Pd(IV)-C. Namely, the high oxidative state palladium is involved in catalytic cycle. In all, this transformation represents a novel strategy to synthesize a variety of vicinal fluoroamine derivatives.

参考文献

[1] (a) Welch, J. T.; Eswarakrishman, S. Fluorine in Bioorganic Chemistry, Wiley, New York, 1991;
(b) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry, Principles and Commercial Application, Plenum Press, New York, 1994.
[2] For reviews on fluorination of organic compounds, see (a) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem. Int. Ed. 2005, 44, 192;
(b) Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214;
(c) Pihko, P. M. Angew. Chem. Int. Ed. 2006, 45, 544;
(d) Appayee, C.; Brenner-Moyer, S. E. Org. Lett. 2010, 12, 3357.
[3] (a) Smoekh, L.; Shanzer, A. J. Am. Chem. Soc. 1982, 104, 5836;
(b) Philips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165;
(c) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693;
(d) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 2219;
(e) Wilson, D. A. US 4339070, 1983 [Chem. Abstr. 1983, 99, 138839].
[4] For some reviews, see: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675;
(b) Brunet, J. J.; Togni, A.; Grützmacher, D. H. Catalytic Heterofunctionalization, Wiley-VCH, New York, 2001, pp. 91~141;
(c) Eds.: Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673;
(d) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507.
[5] For reviews that describe oxidative amination reaction, see: (a) Beccalli, E. M.; Broggini, G.; Marttinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318;
(b) Stahl, S. S. Angew. Chem. Int. Ed. 2004, 43, 3400;
(c) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910;
(d) McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
[6] For some examples of intermolecular oxidative amination of alkenes, see: (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996;
(b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868;
(c) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888.
[7] For recent reviews on transition metal-catalyzed C-F bond formation, see: (a) Brown, J. M.; Gouvernuer, V. Angew. Chem. Int. Ed. 2009, 48, 8610;
(b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160;
(c) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804. For recent examples see:
(d) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134;
(e) Wang, X.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520;
(f) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993;
(g) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Bulchwald, S. L. Science 2009, 325, 1661;
(h) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
[8] Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
[9] Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
[10] The effect of silver is unclear at this moment. It is possible that AgF is effective for the generation of C-PdF complex via the interaction of Ag and Pd. For details, see: (a) Heckenroth, M.; Neels, A.; Garnier, M. G.; Aebi, P.; Ehlers, A. W.; Albrecht, M. Chem. Eur. J. 2009, 15, 9375;
(b) Heckenroth, M.; Kluser, E.; Neels, A.; Albrecht, M. Angew. Chem., Int. Ed. 2007, 46, 6293.
[11] (a) Gatti, G.; López, J. A.; Mealli, C.; Musco, A. J. Organomet. Chem. 1994, 483, 77;
(b) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 2436;
(c) LaPoite, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906;
(d) Lin, Y. S.; Yamamoto, A. Organometallics 1998, 17, 3466;
(e) Nozaki, K.; Komaki, H.; Kawashima, Y.; Hiyama, T.; Matsubara, T. J. Am. Chem. Soc. 2001, 123, 534;
(f) Hii, K. K.; Claridge, T. D. W.; Giernoth, R.; Brown, J. M. Adv. Synth. Catal. 2004, 346, 983.
文章导航

/