研究论文

系列2-苯基喹啉类铱配合物的合成及电化学发光性能研究

  • 童碧海 ,
  • 梅群波 ,
  • 李志文 ,
  • 董永平 ,
  • 张千峰
展开
  • a 安徽工业大学 冶金与资源学院 分子工程与应用化学研究所 马鞍山 243002;
    b 南京邮电大学信息材料与纳米技术研究院 江苏省有机电子与平板显示重点实验室 南京 210046;
    c 庆元中学 庆元 323800

收稿日期: 2012-08-23

  网络出版日期: 2012-11-14

基金资助

项目受国家自然科学基金(No. 50903001)资助.

Investigation on the Electrochemiluminescence Properties of a Series of Cyclometalated Iridium(III) Complexes Based on 2-Phenylquinoline Derivatives

  • Tong Bihai ,
  • Mei Qunbo ,
  • Li Zhiwen ,
  • Dong Yongping ,
  • Zhang Qianfeng
Expand
  • a College of Metallurgy and Resources, Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Maanshan 243002;
    b Jiangsu Key Lab of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210046;
    c Qingyuan Middle School, Qingyuan 323800

Received date: 2012-08-23

  Online published: 2012-11-14

Supported by

Project supported by the National Natural Science Foundations of China (No. 50903001).

摘要

以4-甲氧羰基-2-苯基喹啉为环金属配体, N^N辅助配体为解离配体合成了一系列离子型环金属铱配合物. 配合物的结构通过质谱、核磁进行了表征. 配合物1还测试了其单晶结构. 对配合物的紫外、磷光性质进行了表征, 溶液状态下为红光发射, 波长在610~620 nm之间, 磷光寿命在133~496 ns之间, 量子效率在0.7%~16.6%之间. 铱配合物的电化学发光与Ru(bpy)32+有所不同, 发光电位比Ru(bpy)32+要高, 且大部分铱配合物在正负电位都能发光, 最大发光强度是 的三倍.

本文引用格式

童碧海 , 梅群波 , 李志文 , 董永平 , 张千峰 . 系列2-苯基喹啉类铱配合物的合成及电化学发光性能研究[J]. 化学学报, 2012 , 70(23) : 2451 -2456 . DOI: 10.6023/A12080571

Abstract

A series of cyclometalated iridium(III) complexes ([Ir(pqcm)2(bpy)][PF6] (1), [Ir(pqcm)2(dafo)[PF6] (2), [Ir(pqcm)2(phen)][PF6] (3), [Ir(pqcm)2(altpy)][PF6] (4), [Ir(pqcm)2(bbim)][PF6] (5), [Ir(pqcm)2(bvbbim)][PF6] (6), pqcm=2-phenyl-quinoline-4-carboxylic acid methyl ester, bpy=2,2'-bipyridine, dafo=4,5-diazafluoren-9-one, phen=1,10-phenanthroline, altpy=4'-allyloxy-2,2':6',2''-terpyridine, bbim=2,2'-bibenzimidazole, bvbbim=1,1'-diallyl-2,2'-bibenz- imidazole) were synthesized with cyclometalated ligand of pqcm and N^N typical assistant ligands. New iridium(III) complexes were characterized by the NMR and mass spectroscopies, and the single crystal structure of complex 1 was measured, the cationic distorted octahedrally coordinated iridium(III) center was ligated by two cyclometalated pqcm ligands and one chelating bpy ligand with a negative [PF6]- counter anion. In CH2Cl2 solution, the iridium(III) complexes 1, 2 and 3 displayed orange red emissions with wavelength about 610 nm, while the iridium(III) complexes 4, 5 and 6 displayed pure red emissions with wavelength about 620 nm, which was desirable for example in organic light-emitting devices applications. The iridium(III) complexes had lifetimes between 133 ns and 496 ns, quantum efficiencies between 0.7% and 16.6%. All these iridium(III) complexes had higher quantum efficiencies than Ru(bpy)32+. The electrochemiluminescence (ECL) of cationic cyclometalated iridium complexes, immobilized on the glassy carbon electrode was investigated in neutral phosphate buffer solution (PBS). The ECL peaks were obtained when oxalate was used as co-reactant and positive initial potential scan direction was adopted. The ECL of iridium(III) complexes were different from that of Ru(bpy)32+, Iridium(III) complexes had higher ECL potential and more than three times higher ECL intensity than Ru(bpy)32+, suggesting that these synthesized iridium complexes have great application potential in ECL detection. Unlike Ru(bpy)32+, most iridium(III) complexes could not only offer intensive anodic ECL peak but also provide a cathodic ECL peak. The ECL intensities of iridium(III) complexes had almost the same sequence with the quantum efficiencies of iridium(III) complexes.

参考文献

[1] Kim, J. I.; Shim, I. S.; Kim, H. J. Am. Chem. Soc. 2005, 127, 1614.
[2] Zhao, Q.; Huang, C. H.; Li, F. Y. Chem. Soc. Rev. 2011, 40, 2508.
[3] Zhao, Q.; Li, F. Y.; Huang, C. H. Chem. Soc. Rev. 2010, 39, 3007.
[4] Tong, B. H.; Mei, Q. B.; Wang, S. J. J. Mater. Chem. 2008, 18, 1636.
[5] Zanarini, S.; Rampazzo, E.; Bonacchi, S. J. Am. Chem. Soc. 2009, 131, 14208.
[6] Li, C. X.; Lin, J.; Guo, Y. S.; Zhang, S. S. Chem. Commun. 2011, 47, 4442.
[7] Li, M. J.; Jiao, P. C.; Lin, M.; He, W. W.; Chen, G. N.; Chen, X. Analyst 2011, 136, 205.
[8] Lin, H. W.; Cinar, M. E.; Schmittel, M. Dalton Trans. 2010, 39, 5130.
[9] Sun, S. Q.; Song, Q. J.; He, F. Y. Chin. Chem. Lett. 2008, 19, 1509.
[10] Wu, F. H.; Tong, B. H.; Zhang, Q. F. Anal. Sci. 2011, 27, 529.
[11] Dong, Y. P.; Shi, M. J.; Tong, B. H. Luminescence 2012, 27, 414
[12] Dong, Y. P.; Huang, L.; Tong, B. H. Luminescence 2012, 27, 262.
[13] Tong, B. H.; Qiang, J. Y.; Xu, Y. Q. Inorg. Chem. Commun. 2011, 14(12), 1937.
[14] Lee, S. J.; Park, K. M.; Yang, K. Inorg. Chem. 2009, 48, 1030.
[15] Chen, L. Q.; Yang, C. L.; Qin, J. G. Inorg. Chim. Acta 2006, 359, 4207.
[16] Douglas, B.; McDaniel, D.; Alexander, J. Concepts and Models in Inorganic Chemistry, 3rd ed., John Wiley & Sons, Inc., New York, 1994.
[17] Graf, M.; Thesen, M.; Kr黦er, H. Inorg. Chem. Commun. 2009, 12, 701.
[18] Zhao, Q.; Liu, S. J.; Shi, M. Inorg. Chem. 2006, 45, 6152.
[19] Jeon, S. O.; Jang, S. E.; Son, H. S. Adv. Mater. 2011, 23, 1436.
[20] Van-Houten, J.; Watts, R. J. J. Am. Chem. Soc. 1976, 98, 4853.
[21] Bruce, D.; Richter, M. M. Anal. Chem. 2002, 74, 1340.
[22] Muegge, B. D.; Richter, M. M. Anal. Chem. 2004, 76, 73.
文章导航

/