综述

仿生超疏水性表面的生物应用

  • 梁伟欣 ,
  • 张亚斌 ,
  • 王奔 ,
  • 郭志光 ,
  • 刘维民
展开
  • a 湖北大学功能材料绿色制备与应用教育部重点实验室 武汉 430062;
    b 中国科学院兰州化学物理研究所固体润滑国家重点实验室 兰州 730000

收稿日期: 2012-09-18

  网络出版日期: 2012-11-14

基金资助

项目受国家自然科学基金(Nos. 31070155, 11172301);湖北省杰出青年基金(No. ZRZ0048)和中国科学院“百人计划”资助.

Biological Applications of Biomimetic Superhydrophobic Surfaces

  • Liang Weixin ,
  • Zhang Yabin ,
  • Wang Ben ,
  • Guo Zhiguang ,
  • Liu Weimin
Expand
  • a Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062;
    b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

Received date: 2012-09-18

  Online published: 2012-11-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31070155 and 11172301)、Hubei Province Funds for Distinguished Young Scientists (No. ZRZ0048) and the “Top Hundred Talents” Program of Chinese Academy of Sciences.

摘要

自然给科学家和工程师带来仿生的灵感和启发. 近年来, 受自然界中荷叶的启发, 在充分考虑表面形貌和化学组成协同效应的基础上, 人们已经制备出许多仿生超疏水性表面, 这些表面在抗结冰、微流体、生物相容性等领域具有很多潜在的应用价值. 仿生超疏水性表面在生物领域的应用逐渐崭露头角, 研究发现, 超疏水性表面所俘获的空气能够减缓药物释放的速率, 因此利用此类表面作为药物的载体有望实现长期供药. 超疏水特性能在一定程度改善和提高生物体与材料表面之间的相互作用, 例如, 血小板几乎不在超疏水表面上进行粘附和活化避免了造成血栓和血凝, 因此仿生超疏水性表面可用于制备人造血管和与血液相接触的仪器. 细胞和生物分子在不同特殊润湿性表面具有不同的行为和现象, 如粘附、繁殖、吸附等差异, 这有助于进一步探索研究细胞和生物分子的信息功能, 是当前仿生超疏水性表面应用的重要研究方向之一. 本综述简单介绍了经典的润湿模型, 重点总结了仿生超疏水表面在生物领域的应用, 其主要包括控制药物释放、提高血液相容性、蛋白质吸附研究、细胞行为研究、生物分子和细胞微图案化等. 最后, 对仿生超疏水性表面在生物领域研究应用进行了展望.

本文引用格式

梁伟欣 , 张亚斌 , 王奔 , 郭志光 , 刘维民 . 仿生超疏水性表面的生物应用[J]. 化学学报, 2012 , 70(23) : 2393 -2403 . DOI: 10.6023/A12090676

Abstract

Nature has long served as a source of inspiration for scientists and engineers. Inspired from lotus leaf, a variety of biomimetic surfaces with superhydrophobicity have been fabricated in recent years based on the combination of surface micro- and nanostructures and chemical compositions by using many different synthetic methods. These surfaces exhibit various significant applications in anti-icing, microfluidic systems, biocompatibility and other fields. As a special material property, superhydrophobicity has been proved to be used in biomedical and biological applications in recent years. Three-dimensional superhydrophobic materials may be become an ideal carrier for drug delivery in the near future since entrapped air within the material should act as a removable barrier component to retard drug release. Superhydrophobicity property can modulate and improve the interfacial reactions of biological entities and material surfaces. For example, platelets can hardly adhere and be activated on superhydrophobic surfaces so as to avoid the blood coagulation and thrombosis, which can be applied on manmade blood vessels, artificial organ implantations and other medical devices in contact with blood. Cell and biomolecule on the surfaces with special wettabilities, e.g. superhydrophobicity, superhydrophilicity, reversible switching between superhydrophobicity and superhydrophilicity, will show different behaviors, which have been demonstrated by the investigations of protein adsorption and cell adhesion, cell and biomolecule micropatterning, antibacterial, high-throughput screening. In this review, we briefly introduce the classical wettability models, and then focus mainly on their biological applications, including drug release, blood compatibility, protein adsorption, cell behavior, biomolecule and cell micropatterning. Finally, the prospect of biomimetic superhydrophobic surface in biological applications is also proposed.

参考文献

[1] Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1.

[2] Guo, Z. G.; Liu, W. M.; Su, B. L. J. Colloid Interface Sci. 2011, 353, 335.

[3] Xin, B. W.; Hao, J. C. Chem. Soc. Rev. 2010, 39, 769.

[4] Yao, X.; Song, Y. L.; Jiang, L. Adv. Mater. 2011, 23, 719.

[5] Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward, L. J.; Teare, D. O. H.; Badyal, J. P. S. Langmuir 2007, 23, 689.

[6] Dorrer, C.; Ruhe, J. Adv. Mater. 2008, 20, 159.

[7] Lee, C. C.; Sui, G. D.; Elizarov, A.; Shu, C. Y. J.; Shin, Y. S.; Dooley, A. N.; Huang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Philps, M. E.; Quake, S. R.; Tseng, H. R. Science 2005, 310, 1793.

[8] Matosevitc, S.; Szita, N.; Baganz, F. Adv. Mater. 2011, 86, 325.

[9] He, M.; Wang, J. X.; Li, H. L.; Jin, X. L.; Wang, J. J.; Liu, B. Q.; Song, Y. L. Soft Matter 2010, 6, 2396.

[10] Sarkar, D. K.; Farzaneh, M. J. Adhes. Sci. Technol. 2009, 23, 1215.

[11] Gao, X. F.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J. H.; Yang, B.; Jiang, L. Adv. Mater. 2007, 19, 2213.

[12] Gao, X. F.; Jiang, L. Nature 2004, 432, 36.

[13] Zheng, Y. M.; Gao, X. F.; Jiang, L. Soft Matter 2007, 3, 178.

[14] Liu, K. S.; Du, J. X.; Wu, J. T.; Jiang, L. Nanoscale 2012, 4, 768.

[15] Parker, A. R.; Lawrence, C. R. Nature 2001, 414, 33.

[16] Darmanin, T.; Nicolas, M.; Guittard, F. Phys. Chem. Chem. Phys. 2008, 10, 4322.

[17] Darmanin, T.; Guittard, F. J. Am. Chem. Soc. 2011, 133, 15627.

[18] Fresnais, J.; Chapel, J. P.; Poncin-Epaillard, F. Surf. Coat. Tech. 2006, 200, 5296.

[19] Wohl, C. J.; Belcher, M. A.; Chen, L.; Connell, J. W. Langmuir 2010, 26, 11469.

[20] Ji, J.; Fu, J. H.; Shen, J. C. Adv. Mater. 2006, 18, 1441.

[21] Buck, M. E.; Schwartz, S. C.; Lynn, D. M. Chem. Mater. 2010, 22, 6319.

[22] Han, D.; Steckl, A. J. Langmuir 2009, 25, 9454.

[23] Asmatulu, R.; Ceylan, M.; Nuraje, N. Langmuir 2011, 27, 504.

[24] Tian, W.; Xu, Y.; Huang, L. B.; Yung, K. L.; Xie, Y. C.; Chen, W. Nanoscale 2011, 3, 5147.

[25] Sun, M. H.; Luo, C. X.; Xu, L. P.; Ji, H.; Ouyang, Q.; Yu, D. P.; Chen, Y. Langmuir 2005, 21, 8978.

[26] Li, Z. X.; Xing, Y. J.; Dai, J. J. J. Appl. Surf. Sci. 2008, 254, 2131.

[27] Mikos, A. G.; Lyman, M. D.; Freed, L. E.; Langer, R. Biomaterials 1994, 15, 55.

[28] Laurencin, C. T.; El-Amin, S. F.; Ambrosio, A. A. J. Biomed. Mater. Res. 1996, 30, 133.

[29] Attawia, M. A.; Uhrich, K. E.; Botchwey, E.; Fan, M.; Langer, R.; Laurencin, C. T. J. Biomed. Mater. Res. 1995, 29, 1233.

[30] Kaito, T.; Myoui, A.; Takaoka, K.; Saito, N.; Nishikawa, M.; Tamai, N.; Ohgushi, H.; Yoshikawa, H. Biomaterials 2005, 26, 73.

[31] Gao, C. G.; Gao, J. P.; You, X. D.; Huo, S. J.; Li, X. L.; Zhang, Y.; Zhang, W. H. J. Biomed. Mater. Res. 2005, 73A, 244.

[32] Xu, P. S.; Kirk, A. V.; Zhan, Y. H.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Angew. Chem., Int. Ed. 2007, 46, 4999.

[33] Zhang, W. Q.; Shi, L. Q.; Ma, R. J.; An, Y. L.; Xu, Y. L.; Wu, K. Macromolecules 2005, 38, 8850.

[34] Schilli, C. M.; Zhang, M. F.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, C.; M黮ler, A. H. E. Macromolecules 2004, 37, 7861.

[35] Liu, J. L.; Feng, X. Q.; Wang, G. F.; Yu, S. W. J. Phys. Condens. Matter 2007, 19, 356002.

[36] Whyman, G.; Bormashenko, E. Langmuir 2011, 27, 8171.

[37] Young, T. Philos. Trans. R. Soc. 1805, 95, 65.

[38] Wenzel, R. N. Indust. Eng. Chem. 1936, 28, 988.

[39] Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.

[40] Guo, Z. G.; Su, B. L. Appl. Phys. Lett. 2011, 99, 082106.

[41] Lafuma, A.; Qu閞?, D. Nat. Mater. 2003, 2, 457.

[42] Marmur, A. Langmuir 2004, 20, 3517.

[43] Dupuis, A.; Yeomans, J. M. Langmuir 2005, 21, 2624.

[44] Patankar, N. A. Langmuir 2003, 19, 1249.

[45] Hu, S. H.; Liu, T. Y.; Huang, H. Y.; Liu, D. M.; Chen, S. Y. Langmuir 2008, 24, 239.

[46] Berg, M. C.; Zhai, L.; Cohen, R. E.; Rubner, M. F. Biomacromolecules 2006, 7, 357.

[47] Lecomte, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; Bodmeier, R. Biomacromolecules 2005, 6, 2074.

[48] Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W. J. Am. Chem. Soc. 2012, 134, 2016.

[49] Yohe, S. T.; Herrera, V. L. M.; Colson, Y. L.; Grinstaff, M. W. J. Controlled Release 2012, 162, 92.

[50] Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y. J. Am. Chem. Soc. 2005, 127, 14473.

[51] Sethuraman, A.; Han, M.; Kane, R. S.; Belfort, G. Langmuir 2004, 20, 7779.

[52] Kumar, N.; Parajuli, O.; Gupta, A.; Hahm, J. Langmuir 2008, 24, 2688.

[53] Wang, X.; Gan, H.; Sun, T. L. Adv. Funct. Mater. 2011, 21, 3276.

[54] Sigal, G. B.; Mrksich, M.; Whitesides, G. M. J. Am. Chem. Soc. 1998, 120, 3464.

[55] Arima, Y.; Iwata, H. Biomaterials 2007, 28, 3074.

[56] Stallard, C. P.; McDonnell, K. A.; Onayemi, O. D.; O'Gara, J. P.; Dowling, D. P. Biointerphases 2012, 7, 31.

[57] Koc, Y.; Mello, J. D.; Mchale, G.; Newton, M. I.; Roach, P.; Shirtcliffe, N. J. Lab Chip 2008, 8, 582.

[58] Leibner, E. S.; Barnthip, N.; Chen, W. N.; Baumrucher, C. R.; Badding, J. V.; Pishko, M.; Vogler, E. A. Acta Biomater. 2009, 5, 1389.

[59] Pernites, R. B.; Santos, C. M.; Maldonado, M.; Ponnapati, R. R.; Rodrigues, D. F.; Advincula, R. C. Chem. Mater. 2012, 24, 870.

[60] Ballester-Beltrán, J.; Rico, P.; Moratal, D.; Song, W. L.; Mano, J. F.; Salmer髇-Sánchez, M. Soft Matter 2011, 7, 10803.

[61] Fisher, O. Z.; Khademhosseini, A.; Langer, R.; Peppas, N. A. Acc. Chem. Res. 2009, 43, 419.

[62] Intranuovo, F.; Favia, P.; Sardella, E.; Ingrosso, C.; Nardulli, M.; Agostino, R.; Gristina, R. Biomacromolecules 2011, 12, 380.

[63] Qi, S. J.; Yi, C. Q.; Ji, S. L.; Fong, C. C.; Yang, M. S. Appl. Mater. Interfaces 2009, 1, 30.

[64] Wang, H. Y.; Kwok, D. T. K.; Xu, M.; Shi, H. G.; Wu, Z. W.; Zhang, W.; Chu, P. K. Adv. Mater. 2012, 25, 3315.

[65] Alves, N. M.; Shi, J.; Oramas, E.; Santos, J. L.; Tomás, H.; Mano, J. F. J. Biomed. Mater. Res. Part A 2009, 91A, 480.

[66] Lobo, A. O.; Marciano, F. R.; Ramos, S. C.; Machado, M. M.; Corat, E. J.; Corat, M. A. F. Mater. Sci. Eng., C 2011, 31, 1505.

[67] Luo, S. C.; Liour, S. S.; Yu, H. H. Chem. Commun. 2010, 46, 4731.

[68] Mundo, R. D.; Nardulli, M.; Milella, A.; Favia, P.; D'Agostino, R.; Gristina, R. Langmuir 2011, 27, 4914.

[69] Oliveira, S. M.; Song, W. L.; Alves, N. M.; Mano, J. F. Soft Matter 2011, 7, 8932.

[70] Implantation Biology: the Host Response and Biomedical Devices, Ed.: Greco, R. S., CRC Press, Boca Raton, 1994.

[71] Peppas, N. A.; Langer, R. Science 1994, 263, 1715.

[72] Langer, R.; Tirrell, D. A. Nature 2004, 428, 487.

[73] Fan, H. L.; Chen, P. P.; Qi, R. M.; Zhai, J.; Wang, J. X.; Chen, L.; Chen, L.; Sun, Q. M.; Song, Y. L.; Han, D.; Jiang, L. Small 2009, 5, 2144.

[74] Rekha, M. R.; Sharma, C. P. Biomaterials 2009, 30, 6655.

[75] Zhang, Z.; Zhang, M.; Chen, S. F.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Y. Biomaterials 2008, 29, 4285.

[76] Shen, F.; Zhang, E.; Wei, Z. J. Mater. Sci. Eng. 2010, 30, 369.

[77] Sun, T. L.; Tan, H.; Han, D.; Fu, Q.; Jiang, L. Small 2005, 1, 959.

[78] Hou, X. M.; Wang, X. B.; Zhu, Q. S.; Bao, J. C.; Mao, C.; Jiang, L. C.; Shen, J. Colloids Surf. B 2010, 80, 247.

[79] Chen, L.; Liu, M. J.; Bai, H.; Chen, P. P.; Xia, F.; Han, D.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 10467.

[80] Khorasani, M. T.; Mirzadeh, H. J. Appl. Polym. Sci. 2004, 91, 2042.

[81] Toes, G. J.; Musiwinkel, K. W.; Suurmeijer, A. J. H.; Timens, W.; Stokroos, I.; Dungen, J. J. A. M. Biomaterials 2002, 23, 255.

[82] Elisa, M.; Dario, P. Prog. Mol. Subcell Biol. 2009, 47, 341.

[83] Rhee, S. W.; Taylar, A. M.; Tu, C. H.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L. Lab Chip 2005, 5, 102.

[84] Chiara, N. Phys. Chem. Chem. Phys. 2007, 9, 149.

[85] Zhang, X. T.; Jin, M.; Liu, Z. Y.; Tryk, D. A.; Nishimoto, S.; Murakami, T.; Fujishima, A. J. Phys. Chem. C 2007, 111, 14521.

[86] Piret, G.; Coffinier, Y.; Roux, C.; Melnyk, O.; Boukherroub, R. Langmuir 2008, 24, 1670.

[87] Shiu, J. Y.; Chen, P. L. Adv. Funct. Mater. 2007, 17, 2680.

[88] Ishizaki, T.; Saito, N.; Takai, O. Langmuir 2010, 26, 8147.

[89] Piret, G.; Galopin, E.; Coffinier, Y.; Boukherroub, R.; Legrand, D.; Slomianny, C. Soft Matter 2011, 7, 8642.

[90] Geyer, F. L.; Ueda, E.; Liebel, U.; Grau, N.; Levkin, P. A. Angew. Chem., Int. Ed. 2011, 50, 8424.

[91] Shiu, J. Y.; Kuo, C. W.; Whang, W. T.; Chen, P. L. Lab Chip 2010, 10, 556.

[92] Neto, A. I.; Cust骴io, C. A.; Song, W. L.; Mano, J. F. Soft Matter 2011, 7, 4147.

[93] MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760.

[94] Kononen, J.; Bubendorf, L.; Kallionimeni, A.; B鋜lund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M. J.; Sauter, G.; Kallionimeni, O. Nat. Med. 1998, 4, 844.

[95] Crick, C. R.; Ismail, S.; Pratten, J.; Parkin, I. P. Thin Solid Films 2011, 519, 3722.

[96] Fadeeva, E.; Truong, V. K.; Stiesch, M.; Chichkov, B. N.; Crawford, R. J.; Wang, J.; Ivanova, E. P. Langmuir 2011, 27, 3012.

[97] Berendjchi, A.; Khajavi, R.; Yazdanshenas, M. E. Nanoscale Res. Lett. 2011, 6, 594.

[98] Privett, B. J.; Youn, J.; Hong, S. A.; Lee, J.; Han, J.; Shin, J. H.; Schoenfisch, M. H. Langmuir 2011, 27, 9597.

[99] Kumar, R.; M黱stedt, H. Biomaterials 2005, 26, 2081.

[100] Chung, J. S.; Kim, B. G.; Shim, S.; Kim, S. E.; Sohn, E. H.; Yoon, J.; Lee, J. C. J. Colloid Interface Sci. 2012, 366, 64.

[101] Xue, C. H.; Chen, J.; Yin, W.; Jia, S. T.; Ma, J. Z. Appl. Surf. Sci. 2012, 258, 2468.

[102] Khalil-Abad, M. S.; Yazdanshenas, M. E. J. Colloid Interface Sci. 2010, 351, 293.

[103] Choi, C. H.; Kim, C. J. Langmuir 2009, 25, 7561.

[104] Accardo, A.; Gentile, F.; Mecarini, F.; Angelis, F. D.; Burghammer, M.; Fabrizio, E. D.; Riekel, C. Langmuir 2010, 26, 15057. Salgado, C. L.; Oliveira, M. B.; Mano, J. F. Integr. Biol. 2012, 4, 318.
文章导航

/