研究论文

烷基环戊烷被羟基自由基夺氢反应类的动力学研究

  • 郑洋 ,
  • 朱权 ,
  • 李泽荣 ,
  • 李象远
展开
  • a 四川大学化工学院 成都 610065;
    b 四川大学化学学院 成都 610065

收稿日期: 2012-11-06

  网络出版日期: 2012-12-13

基金资助

项目受国家自然科学基金(Nos. 91016002, 20903067)资助.

Investigations on Kinetics for the Reaction Class of Hydrogen Abstractions from Substituted Cyclopentane by Hydroxyl Radical

  • Zheng Yang ,
  • Zhu Quan ,
  • Li Zerong ,
  • Li Xiangyuan
Expand
  • a College of Chemical Engineering, Sichuan University, Chengdu 610065;
    b College of Chemistry, Sichuan University, Chengdu 610065

Received date: 2012-11-06

  Online published: 2012-12-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91016002, 20903067).

摘要

基于燃烧详细反应机理构建的需要, 采用反应类过渡态理论(RC-TST)研究了OH自由基夺取烷基环戊烷环上和侧链上氢原子的动力学. 在考察侧链氢提取反应类的16个代表反应的基础上, 本工作首次将该方法推广到环上α氢提取反应类的10个代表反应的研究, 分别建立了两类反应的线性自由能(LER)关系式. 计算结果表明, 采用RC-TST/LER方法预测的这两类反应的速率常数与直接应用TST/Eckart方法得到的结果接近, 说明RC-TST/LER方法对预测这两类反应的速率常数非常有效, 且节约了大量计算成本. 而且, 无论是侧链还是五元环, OH·夺取叔碳上的氢原子最易发生.

本文引用格式

郑洋 , 朱权 , 李泽荣 , 李象远 . 烷基环戊烷被羟基自由基夺氢反应类的动力学研究[J]. 化学学报, 2013 , 71(01) : 81 -87 . DOI: 10.6023/A12110879

Abstract

In order for the development of the detailed combustion mechanisms, this work applies the reaction class transition state theory (RC-TST) to predict kinetics parameters for hydrogen abstraction reactions from the substituted cyclopentane. 16 Hydrogen abstraction reactions from the side chain and 10 reactions with hydrogen abstraction from the α-carbon atom on the ring have been investigated with RC-TST/LER method. The corresponding linear energy relationship (LER) has also been established. All the geometries of reactants, transition states, and products are optimized at BH&HLYP level of theory with the basis set of cc-pVDZ, and the electronic energy calculation and frequency analyses are also carried out at the same level of theory. Accordingly, the RC-TST factors and LER are derived based on the calculations. For the reference reaction, the minimum energy path of the potential energy surface is obtained at the BH&HLYP/cc-pVDZ level. In order to get the more precise rate constants of the reference reaction, the single-point energies of the selected points along the minimum energy path are calculated at the CCSD(T)/cc-pVDZ level. In the RC-TST/LER method, the other rate constants in this class can be derived from the reference reaction and the RC-TST factors. Our analyses indicate that the rate constants for selected reactions predicted by the RC-TST/LER are in good agreement with those calculated with TST/Eckart method. For the hydrogen abstraction reactions from the side chain and the α-carbon atom on the ring, the maximum error between the two methods is less than 73% and 88%, respectively. Moreover, it is found that the error decreases with the increasing of the temperature. Therefore, the RC-TST/LER method seems to be quite efficient to estimate the rate constants for a large number of reactions in this class and to save a lot of computational resource. In addition, for the two types of reaction classes, the hydrogen at the tertiary carbon can be easily abstracted by hydroxyl radical.

参考文献

[1] Berglund, M.; Fureby, C. Proc. Combust. Inst. 2007, 31, 2497.
[2] Mitani, T.; Kouchi, T. Combust. Flame 2005, 142, 187.
[3] Cooper, S.; Charles, J. Powder Technol. 2005, 151, 27.
[4] Li, C.-Z.; Ran, J.-Y. J. Fuel Chem. Technol. 2012, 40, 1060. (黎柴佐, 冉景煜, 燃料化学学报, 2012, 40, 1060.)
[5] Liu, J.-W.; Xiong, S.-W.; Ma, X.-S. J. Propul. Technol. 2011, 32, 525. (刘建文, 熊生伟, 马雪松, 推进技术, 2011, 32, 525.)
[6] Nehse, M.; Warnat, J.; Chevalier, C. Proc. Combust. Inst. 1996, 26, 773.
[7] Miller, W. H. J. Chem. Phys. 1979, 101, 6810.
[8] Eying, H.; Lin, H. S.; Lin, S. M. Basic Chemistry Kinetics, Wiley, New York, 1980.
[9] Duncan, W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem. 1998, 19, 1039.
[10] Truong, T. N. J. Chem. Phys. 2000, 113, 4957.
[11] Truong, T. N.; Maity, D. K.; Truong, T. T. J. Chem. Phys. 2000, 112, 24.
[12] Bei, Y.-L.; Zhu, C.-F. Acta Chim. Sinica 2007, 65, 1085. (贝逸翎, 主沉浮, 化学学报, 2007, 65, 1085.)
[13] Huynh, L. K.; Artur, R.; Truong, T. N. J. Phys. Chem. A 2006, 110, 473.
[14] Huynh, L. K.; Truong, T. N. Theor. Chem. Acc. 2008, 120, 107.
[15] Sivaramakrishnan, R.; Michael, J. V. Combust. Flame 2009, 156, 1126.
[16] Dunlopt, J. R.; Tully, F. P. J. Phys. Chem. 1993, 97, 11148.
[17] Huynh, L. K.; Barriger, K.; Violi, A. J. Phys. Chem. A 2008, 112, 1436.
[18] Wang, S.-C.; Li, J.; Zhu, Q.; Li, Z.-R.; Li, X.-Y. Acta Chim. Sinica 2012, 70, 585. (王苏川, 李军, 朱权, 李泽荣, 李象远, 化学学报, 2012, 70, 585.)
[19] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A. 1, Gaussian, Inc., Pittsburgh, 2003.
[20] Truong, T. N.; Duncan, W. J. Chem. Phys. 1994, 101, 7408.
[21] Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.
[22] Truong, T. N. http://www.cseo.net.
[23] Truong, T. N.; Nayak, M.; Huynh, H. H.; Cook, T.; Mahajan, P.; Tran, L. T.; Bharath, J.; Jain, S.; Pham, H. B.; Boonyasiriwat, C.; Nguyen, N.; Andersen, E.; Kim, Y.; Choe, S.; Choi, J.; Cheatham, T. E.; Facelli, J. C. J. Chem. Inf. Model. 2006, 46, 971.
[24] Muszynska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N. J. Phys. Chem. A 2009, 113, 8327.
[25] Polanyi, J. C. Acc. Chem. Res. 1972, 5, 161.
[26] Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810.
[27] Nawee, K.; Truong, T. N. J. Phys. Chem. A 2005, 109, 7742.
[28] Melissas, V. S.; Truhlar, D. G. J. Phys. Chem. 1994, 98, 875.
[29] Melissas, V. S.; Truhlar, D. G. J. Chem. Phys. 1993, 99, 1013.
文章导航

/