Ru/Ba-ZrO2催化剂的制备及其氨合成性能研究
收稿日期: 2012-10-11
网络出版日期: 2012-12-18
基金资助
项目受国家科技支撑计划(No. 2007BAE08B02)和中石油科技创新基金(No. 2010D-5006-0502)资助.
Preparation of Ru/Ba-ZrO2 Catalyst and Its Performance for Ammonia Synthesis
Received date: 2012-10-11
Online published: 2012-12-18
Supported by
Project supported by the National Key Technology Research and Development Program (No. 2007BAE08B02) and Innovation Fund of China Petroleum Corporation (No. 2010D-5006-0502).
分别采用柠檬酸络合法、改性共沉淀法和湿浸渍法制备了掺Ba纳米ZrO2材料, 负载Ru后用于催化氨合成反应. 采用X射线衍射、CO2程序升温脱附(CO2-TPD)、N2物理低温吸附、H2程序升温还原技术(H2-TPR)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和CO化学吸附对载体材料和催化剂进行了表征. 结果表明, 不同方法制备载体的物相结构和织构性能均有明显差别, 负载Ru后催化剂的氨合成性能差别也较大. 其中, 以柠檬酸络合法制备的载体材料中Ba以BaZrO3的形式存在, 钙钛矿型BaZrO3具有较强的供电子能力, 电子可以通过Ru与载体间强相互作用传递到Ru表面, 有效地促进N≡N的断裂, 使催化剂的低温活性显著提高. 在425℃, 3 MPa, 空速为10000 h-1条件下, 出口氨浓度为5.72%. 其氨合成活性分别是改性共沉淀法和湿浸渍法制备催化剂的3.8倍和14.3倍.
王自庆 , 陈赓 , 林建新 , 王榕 , 魏可镁 . Ru/Ba-ZrO2催化剂的制备及其氨合成性能研究[J]. 化学学报, 2013 , 71(02) : 205 -212 . DOI: 10.6023/A12090725
The Ba-doped ZrO2 materials were prepared by three methods and used as support for Ru catalysts for ammonia synthesis, i.e., citric acid sol-gel method (SG), modified co-precipitation (CP) and impregnation method (IP). The certain amount of analytical-grade Zr(NO3)4·5H2O and Ba(NO3)2 were dissolved in deionized water to form a transparent mixed nitrate solution. The citric acid was slowly added into the mixture to form a transparent solution and then heated to 80℃ under vigorous stirring until all the water evaporated and a viscous material was obtained. After calcination at 750℃ for 5 h and a puffy white powder was obtained. This was BZ-SG. The solution of NH3·H2O and K2C2O4·H2O was added dropwise to the mixture solution of Zr(NO3)4·5H2O and Ba(NO3)2 with vigorous stirring, and the obtained white suspension was aged at 60℃ for 60 min. The resulting precipitate was centrifuged and washed with distilled water for several times, and then calcined at 750℃ for 5 h. The obtained white solid was named as BZ-CP. The Zr(OH)4 was prepared by adding the KOH into the Zr(NO3)4·5H2O solution. Then the obtained Zr(OH)4 was baked at 300℃ for 3 h and impregnated with aqueous solution of Ba(NO3)2. After dried at 85℃ for 12 h, the sample was heated at 750℃ for 5 h and obtained the BZ-IP sample. Ruthenium catalysts were prepared by impregnating the supports directly with K2RuO4 solution. After reduction with ethyl alcohol, then was dried at 120℃ for 12 h. The samples with 4 wt% Ru were labeled as RBZ-X (X=SG, CP and IP). The molar ratio of Ba to Zr in all the samples is 1:9. The composites materials and catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction of H2 (H2-TPR), temperature programmed desorption of CO2 (CO2-TPD), N2 adsorption- desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and CO chemisorption. The results displayed that the RBZ-SG catalyst showed the highest activity for ammonia synthesis compared to those of RBZ-CP and RBZ-IP. The optimum ammonia concentration over RBZ-SG catalyst is 5.72% under the conditions of 3 MPa, 10000 h-1 and 425℃. This activity is 3.8 and 14.3 times of that of RBZ-CP and RBZ-IP, respectively. Such high activity is mainly resulted from the presence of BaZrO3, which has high electron-donating ability. Mobile electrons would be transferred from BaZrO3 to the Ru metal surface by means of the strong metal-support interaction existed between Ru and reduction BaZrO3, which can facilitate the cleavage of N≡N and enhance the activity for ammonia synthesis sufficiently.
Key words: preparation method; barium; zirconium; ruthenium catalysts; ammonia synthesis
[1] Aika, K.; Ohya, A.; Ozaki, A.; Inoue, Y.; Yasumori, I. J. Catal. 1985, 92, 305.
[2] Liang, C.-H.; Li, Z.-L.; Qiu, J.; Li, C. J. Catal. 2002, 211, 278.
[3] Cai, Y.; Lin, J.-D.; Chen, H.-B.; Zhang, H.-B.; Guo, D.-L; Liao, D.-W. Chin. Chem. Lett. 2000, 11, 373.
[4] Liu, H.-Z. Ammonia Synthesis Catalysts: Practice and Theory, Chemical Industry Press, Beijing, 2007 (刘化章, 氨合成催化剂—理论与实践, 化学工业出版社, 北京, 2007.)
[5] Guo, S.-J.; Pan, X.-L.; Gao, H.-L.; Yang, Z.-Q.; Zhao, J.-J.; Bao, X.-H. Chem. Eur. J. 2010, 16, 5379.
[6] Li, Y.; Pan, C. Y.; Han, W.-F.; Chai, H.-F; Liu, H.-Z. Catal. Today 2011, 174, 97.
[7] Larichev, Y. V.; Moroz, B. L.; Zaikovskii, V. I.; Yunusov, S. M.; Kalyuzhnaya, E. S.; Shur, V. B.; Bukhtiyarov, V. I. J. Phys. Chem. C 2007, 111, 9427.
[8] Larichev, Y. V.; Moroz, B. L.; Bukhtiyarov, V. I. Appl. Surf. Sci. 2011, 258, 1541.
[9] Lin, J.-X.; Wang, Z.-Q.; Zhang, L.-M.; Ni, J.; Wang, R.; Wei, K.-M. Chin. J. Catal. 2012, 33, 1075. (林建新, 王自庆, 张留明, 倪军, 王榕, 魏可镁, 催化学报, 2012, 33, 1075.)
[10] Masthan, S. K.; Rama-Rao, K. S.; Rao, P. K. Indian J. Chem. A 1993, 32, 383.
[11] Masthan, S. K.; Rama-Rao, K. S.; Rao, P. Indian J. Chem. A 1995, 34, 146.
[12] Yang, W.-S.; Liu, Q.-G.; Qiu, W.-H.; Lu, S.-G.; Yang, L.-L. Solid State Ionics 1999, 121, 79.
[13] Yang, X.-L.; Xia, C.-G.; Tang, L.-P.; Xiong, X.-M.; Mu, X.-Y.; Hu, B. Acta Phys.-Chim. Sin. 2010, 26, 3263. (杨晓龙, 夏春谷, 唐立平, 熊绪茂, 慕新元, 胡斌, 物理化学学报, 2010, 26, 3263.)
[14] Guo, X.-M.; Mao, D.-S.; Lu, G.-Z.; Wang, S. Acta Phys.-Chim. Sin. 2012, 28, 170. (郭晓明, 毛东森, 卢冠忠, 王嵩, 物理化学学报, 2012, 28, 170.)
[15] Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. J. Catal. 2010, 271, 178.
[16] Du, S.-W.; Wang, R.; Lin, B.-Y.; Wei, K.-M. Chin. J. Catal. 2008, 29, 463. (杜书伟, 王榕, 林炳裕, 魏可镁, 催化学报, 2008, 29, 463.)
[17] Yang, X.-L.; Tang, L.-P.; Xia, C.-G.; Xiong, X.-M.; Mu, X.-Y.; Hu, B. Chin. J. Catal. 2012, 33, 447. (杨晓龙, 唐立平, 夏春谷, 熊绪茂, 慕新元, 胡斌, 催化学报, 2012, 33, 447.)
[18] You, Z.; Inazu, K.; Aika, K.-I.; Baba, T. J. Catal. 2007, 251, 321.
[19] Hayakawa, T.; Suzuki, S.; Nakamura, J.; Uchijima, T.; Hamakawa, S.; Suzuki, K.; ShIshido, T.; Takehira, K. Appl. Catal. A 1999, 183, 273.
[20] Wang, Z.-Q.; Lin, J.-X.; Wang, R.; Wei, K.-M. Chin. J. Inorg. Chem. 2013, 29, DOI: 10.3969/j.issn.1001-4861.2013.00.018 (王自庆, 林建新, 王榕, 魏可镁, 无机化学学报, 2013, 29, DOI: 10.3969/ j.issn.1001-4861.2013.00.018.)
[21] Li, J.; Chen, J.; Song, W.; Liu, J.; Shen, W. Appl. Catal. A 2008, 334, 321.
[22] Chen, J.; Yao, C.; Zhao, Y.; Jia, P. Int. J. Hydrogen Energy 2010, 35, 1630.
[23] Yang, X.; Zhang, W.; Xia, C.-G.; Xiong, X.-M.; Mu, X.-Y.; Hu, B. Catal. Commun. 2010, 11, 867.
[24] Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horslely, J. A. Science 1981, 211, 1121.
[25] Lin, J.-X.; Zhang, L.-M.; Ni, J.; Wang, R.; Wei, K.-M. Acta Chim. Sinica 2012, 70, 137. (林建新, 张留明, 倪军, 王榕, 魏可镁, 化学学报, 2012, 70, 137.)
[26] Luo, X.-J.; Wang, R.; Ni, J.; Lin, J.-X.; Wei, K.-M. Acta Chim. Sinica. 2009, 67, 2573. (罗小军, 王榕, 倪军, 林建新, 魏可镁, 化学学报, 2009, 67, 2573.)
[27] Xu, C.-F.; OuYang, L.; Zhang, J.; Zhou, B.; Li, Y.; Liu, H.-Z. Chin. J. Catal. 2010, 31, 677. (徐春凤, 欧阳亮, 张佳, 周斌, 李瑛, 刘化章, 催化学报, 2010, 31, 677.)
[28] Lin, B.; Wang, R.; Lin, J.; Du, S.; Yu, X.; Wei, K. Catal. Commun. 2007, 8, 1838.
[29] Zhang, L.; Lin, J.; Ni, J.; Wang, R.; Wei, K. Catal. Commun. 2011, 15, 23.
[30] Taylor, K. C. J. Catal. 1975, 38, 299
[31] Iwamoto, J.; Itoh, M.; Kajita, Y.; Saito, M.; Machida, K. Catal. Commun. 2007, 8, 941.
[32] Izumi, Y.; Aika, K.-I. J. Phys. Chem. 1995, 99, 10346.
[33] Izumi, Y.; Iwata, Y.; Aika, K.-I. J. Phys. Chem. 1996, 100, 9421.
[34] Gao, W.-J.; Guo, Sh.-J.; Zhang, H.-B.; Pan, X.-L.; Bao, X.-H. Chin. J. Catal. 2011, 32, 1418. (高伟洁, 郭淑静, 张洪波, 潘秀莲, 包信和, 催化学报, 2011, 32, 1418.)
[35] Truszkiewicz, E.; Raróg, P. W.; Schmidt, S. K.; Jodzis, S.; Wilczkowska, E.; Lomot, D.; Kaszkur, Z.; Karpński, Z.; Kowalczyk, Z. J. Catal. 2009, 265, 181.
[36] Larichev, Y. V.; Moroz, B. L.; Moroz, E. M.; Zaikovskii, V. I.; Yunusov, S. M.; Kalyuzhnaya, E. S.; Shur, V. B.; Bukhtiyarov, V. I. Kinet. Catal. 2005, 46, 89.
[37] Rossetti, I.; Sordelli, L.; Ghigna, P.; Pin, S.; Scavini, M.; Forni, L. Inorg. Chem. 2011, 50, 3757.
/
〈 |
|
〉 |