研究展望

偏二甲肼有机凝胶液滴蒸发燃烧模型展望

  • 何博 ,
  • 聂万胜 ,
  • 庄逢辰
展开
  • 解放军装备学院 北京 101416

收稿日期: 2012-11-13

  网络出版日期: 2013-01-04

基金资助

项目受国家自然科学基金(Nos.51076168,51206185)资助.

Prospects of UDMH Organic Gel Droplet Evaporation and Combustion Model

  • He Bo ,
  • Nie Wansheng ,
  • Zhuang Fengchen
Expand
  • The Academy of Equipment, Beijing 101416

Received date: 2012-11-13

  Online published: 2013-01-04

Supported by

Project supported by the National Natural Science Foundation of China (Grant No. 51076168, 51206185).

摘要

有机凝胶推进剂兼具有固体和液体推进剂的优点, 但其液滴在着火燃烧过程出现了剧烈的膨胀-爆裂及火焰扰动现象, 明显不同于常规液体液滴准稳态蒸发燃烧现象, 影响了凝胶液体火箭发动机喷雾燃烧流场及其优化设计工作.根据偏二甲肼(UDMH)有机凝胶液滴着火燃烧过程的内部非稳态蒸发特性及其微观分子结构, 提出了非稳态多组分蒸发模型、界面追踪多相流蒸发模型、离散元多相流蒸发模型三种有机凝胶液滴液相蒸发模型, 重点发展并实现了其中的非稳态多组分蒸发模型, 详细分析了后两种多相流蒸发模型所需的技术储备. 然后针对静止及对流气相环境下的UDMH有机凝胶液滴, 提出了分别采用有限速率化学反应模型、相容性层流火焰面模型解决其气相混合燃烧问题, 并详细分析了其中的刚性化学反应源项处理及火焰面方程求解所面临的困难及其解决措施.

本文引用格式

何博 , 聂万胜 , 庄逢辰 . 偏二甲肼有机凝胶液滴蒸发燃烧模型展望[J]. 化学学报, 2013 , 71(03) : 302 -307 . DOI: 10.6023/A12110913

Abstract

The organic gel propellants have the advantages of both solid and liquid propellant, but the catching fire and burning process of organic gel droplet appears obvious vapor ejection and flame disturbance. This unsteady combustion phenomenon of organic gel droplet is different from the quasi-steady combustion of conventional liquid droplet and produces great influence on the spray combustion flow field of gel liquid rocket engine and its optimization design. Based on the unsteady evaporation characteristics inside UDMH (unsymmetrical dimethylhydrazine) organic gel droplet and the micro molecule structure of organic gel propellant, three kinds of liquid phase evaporation model, the unsteady multicomponent evaporation model, the interface tracking multiphase flow evaporation model and the discrete element multiphase flow evaporation model, are proposed. The unsteady multicomponent evaporation model regards the gel droplet as a binary multiconponent droplet, in which the gellant inside the gel droplet is been equivalent to a species with low volatility and high boiling temperature. In order to depict the shape and location variety of vapor bubble inside the gel droplet more precisely, the interface tracking multiphase flow evaporation model regards the gel droplet and the vapor bubble inside it as a single fluid, and uses the Level Set function tracking the interface location of vapor bubble. Based on the micro molecule structure of organic gel propellant, the discrete element multiphase flow evaporation model for the gel droplet regards the gellant and vapor bubble as the aggregation of micro-particles with different properties respectively, and uses the Lagrange method tracking the movement and aggregation of each kind micro-particle. The multicomponent evaporation model has been implemented in our foregoing work, so a summary of the model is presented. And next the main difficulties and the technique preparation about the last two multiphase flow models have been presented and analyzed in detail. In view of mixing and combustion process of gas phase surrounding the UDMH organic gel droplet, we propose that the finite rate chemical reaction model and the flamelet model should be used for the stagnation ambient and convective ambient respectively. The difficulties and numerical methods for handling the stiff chemical source term in finite rate chemical reaction model have been presented. And next the consistent flamelet model which takes consideration of species diffusion coefficient and non-unity Lewis number is presented. It would be more precise for the temperature and species interpolation of the gel droplet laminar non-premixed combustion flow field.

参考文献

[1] Natan, B.; Rahimi, S. In Combustion of Energetic Materials, Eds.: Kuo, K. K.; DeLuca, L., Begell House, New York, 2002, p. 172.

[2] Munjal, N. L.; Gupta, B. L.; Varma, M. Propellant, Explos., Pyrotech. 1985, 10, 111.

[3] Rahimi, S.; Natan, B. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Utah, 2001.

[4] Solomon, Y.; Natan, B. Combust. Sci. Technol. 2006, 178, 1185.

[5] Yasuhara, W. K.; Finato, S. R. 2nd Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, 1993.

[6] Schindler, R. C.; Olson, A. M.; Arnold, C. J. Aerospace Design Conference, Irvine, 1992.

[7] Fu, Q. J.; Du, Z. G.; Lan, H. P.; Yu, S. T.; Yang, C. Journal of Rocket Propulsion 2006, 32, 49. (符全军, 杜宗罡, 兰海平, 鱼升堂, 杨超, 火箭推进, 2006, 32, 49.)

[8] Sun, S.; Liu, J.; Gao, D.; He, P. L.; Fang, Y. Acta Chim. Sinica. 2010, 68, 1174. (孙松, 刘静, 高迪, 何盼丽, 房喻, 化学学报, 2010, 68, 1174.)

[9] Liu, J. Q.; Wang, Y. J.; Li, J.; Xu, C. The Fifth National Conference on Chemical Propellant, Dalian, 2011. (刘江强, 王亚军, 李俊, 徐超,中国化学会第五届全国化学推进剂学术会议论文集, 大连, 2011.)

[10] Lv, S. Y.; Shao, Z. Q.; Zhang, Z. L.; Wang, H. Q.; Wang, W. J. Acta Chim. Sinica 2012, 70, 200. (吕少一, 邵自强, 张振玲, 王慧庆, 王文俊, 化学学报, 2012, 70, 200.)

[11] Zhang, M. Z.; Yang, W. D.; Wang, M. Journal of Propulsion Thechnology 2008, 29, 22. (张蒙正, 杨伟东, 王玫, 推进技术, 2008, 29, 22.)

[12] He, B.; He, H. B.; Feng, S. J.; Nie, W. S. Acta Phys. Sin. 2012, 61, 148201. (何博, 何浩波, 丰松江, 聂万胜, 物理学报, 2012, 61, 148201.)

[13] Feng, S. J.; He, B.; Nie, W. S. Journal of Rocket Propulsion 2010, 36, 1. (丰松江, 何博, 聂万胜, 火箭推进, 2010, 36, 1.)

[14] Arnold, R.; Santos, P. H. S.; DeRidder, M. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida, 2010.

[15] Mishra, D. P.; Patyal, A.; Padhwal, M. Fuel 2011, 90, 1805.

[16] Kunin, A.; Natan, B.; Greenberg, J. B. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, 2008.

[17] He, B.; Nie, W. S.; He, H. B. Energy Fuels 2012, 26, 6627.

[18] Ghassemi, H.; Baek, S. W.; Khan, Q. S. Combust. Sci. Technol. 2006, 178, 1031.

[19] Tanguy, S.; Menard, T.; Berlemont, A. J. Comput. Phys. 2007, 221, 837.

[20] Gibou, F.; Chen, L.; Nguyen, D. J. Comput. Phys. 2007, 222, 536.

[21] Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Powder Technol. 1993, 77, 79.

[22] Lian, G.; Thornton, C.; Adams, M. J. J. Colloid Interface Sci. 1993, 161, 131.

[23] Baxter, J.; Abou-Chakra, H.; Tuzun, U.; Lamptey, B. Chem. Eng. Res. Des. 2000, 78, 1019.

[24] Weber, M. W. Ph.D. Dissertation, University of Colorado, Colorado, 2004.

[25] Bell, J. B.; Day, M. S.; Grcar, J. F. Proceedings of the Combustion Institute 2002, 29, 1987.

[26] He, B.; Nie, W. S.; Feng, S. J. Adv. Mater. Res. 2011, 297, 2333.

[27] Lu, T. F.; Law, C. K. Combust. Flame 2006, 146, 472.

[28] Jia, M.; Xie, M. Z. Transactions of CSICE 2006, 24, 9. (贾明, 解茂昭, 内燃机学报, 2006, 24, 9.)

[29] Singer, M. A.; Pope, S. B.; Najm, H. N. Combust. Theor. Model. 2006, 10, 199.

[30] Yang, Y.; Xing, J. W.; Le, J. L.; Wang, J. N. Journal of Aerospace Power 2008, 23, 605. (杨阳, 邢建文, 乐嘉陵, 王金诺, 航空动力学报, 2008, 23, 605.)

[31] Kolla, H.; Swaminathan, N. Combust. Flame 2010, 157, 943.

[32] Sabelnikov, V.; Deshaies, B.; Figueira, L. F.; Silva, D. Combust. Flame 1998, 114, 577.

[33] Claramunt, K.; Consul, R.; Carbonell, D. Combust. Flame 2006, 145, 845.

[34] Pitch, H.; Peters, N. Combust. Flame 1998, 114, 26.

[35] Grcar, J. F. The Twopnt Program for Boundary Value Problems, Sandia National Laboratories, 1996.

[36] He, B.; Nie, W. S.; Su, L. Y. Tactic Missile Technology 2012, 153, 17. (何博, 聂万胜, 苏凌宇, 战术导弹技术, 2012, 153, 17.)

文章导航

/