研究亮点

氧化偶联策略在复杂吲哚生物碱全合成中的应用

  • 张丹 ,
  • 秦勇
展开
  • a 重庆大学创新药物研究中心 化学化工学院 重庆401331;
    b 四川大学 华西药学院 成都610041

收稿日期: 2012-12-11

  网络出版日期: 2013-01-04

基金资助

项目受科技部973计划(No. 2010CB833200);国家自然科学基金(Nos. 21202209, 21132006);中央高校基本科研业务费(CQDXWL-2012-131)以及重庆市自然科学基金(No. cstc2012jjA10087)资助.

Oxidative Coupling Strategy in the Total Syntheses of Complex Indole Alkaloids

  • Zhang Dan ,
  • Qin Yong
Expand
  • a The Innovative Drug Research Centre and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331;
    b West China School of Pharmacy, Sichuan University, Chengdu 610041

Received date: 2012-12-11

  Online published: 2013-01-04

Supported by

Project supported by National Basic Research Program of China (973 program, No. 2010CB833200), the Natural Science Foundation of China (Nos. 21202209, 21132006), the Fundamental Research Funds for the Central Universities (CQDXWL-2012-131), and the Natural Science Foundation Project of CQ CSTC (No. cstc2012jjA10087).

摘要

氧化偶联反应作为一种高效、经济的C—C键构建策略, 在天然产物的全合成中得到了重要的应用. 近年来, 马大为课题组通过发展高效的LiHMDS/I2偶联条件, 成功实现了四种复杂吲哚生物碱的全合成, 在该领域取得了重要的进展. 本文就马大为课题组近年在该领域的工作作一亮点评述.

本文引用格式

张丹 , 秦勇 . 氧化偶联策略在复杂吲哚生物碱全合成中的应用[J]. 化学学报, 2013 , 71(02) : 147 -150 . DOI: 10.6023/A12121037

Abstract

Oxidative coupling as a highly efficient and economic strategy for carbon-carbon bond formation has been applied in the total syntheses of natural products. Recently, Ma’s group achieved the total syntheses of four complex indole alkaloids by developing a highly versatile LiHMDS/I2 oxidative coupling condition, which merits an important progress in this filed. In this highlight, recent progress of Ma’s group is reviewed.

参考文献

[1] (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450;

(b) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394;

(c) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed. 2005, 44, 606;

(d) Baran, P. S.; Demartino, M. P. Angew. Chem., Int. Ed. 2006, 45, 7083;

(e) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857;

(f) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404;

(g) Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 17938.

[2] Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 7568.

[3] (a) Zuo, Z. Z.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2010, 132, 13226;

(b) Zuo, Z. W.; Ma, D. W. Angew. Chem., Int. Ed. 2011, 50, 12008;

(c) Zi, W. W.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2012, 134, 9126.

[4] (a) Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Tetrahedron Lett. 1993, 34, 2355;

(b) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.; Schauman, K.; Wray, V.; Steube, K.; Proksch, P. J. Nat. Prod. 2004, 67, 78;

(c) Hayashi, H.; Matsumoto, H.; Akiyama, K. Biosci. Biotechnol. Biochem. 2004, 68, 753;

(d) Andersen, B.; Smedsgaard, J.; Frisvad, J. C. J. Agric. Food Chem. 2004, 52, 2421;

(e) Dalsgaard, P. W.; Blunt, J. W.; Munro, M. H. G.; Frisvad, J. C.; Christophersen, C. J. Nat. Prod. 2005, 68, 258;

(f) Wigley, L. J.; Mantle, P. G.; Perry, D. A. Phytochemistry 2006, 67, 561;

(g) Siengalewicz, P.; Gaich, T.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 8170.

[5] (a) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794;

(b) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447;

(c) Liu, P.; Seo, J. H.; Weinreb, S. M. Angew. Chem., Int. Ed. 2010, 49, 2000;

(d) Belmar, J.; Funk, R. L. J. Am. Chem. Soc. 2012, 134, 16941.

[6] (a) Anthoni, U.; Christophersen, C.; Nielsen, P. H. In Alkaloids: Chemical and Biological Perspectives, Vol. 13, Ed.: Pelletier, S. W., Wiley, New York, 1999, pp. 163~236;

(b) Ramírez, A.; García-Rubio, S. Curr. Med. Chem. 2003, 10, 1891;

(c) Massiot, G.; Thépenier, P.; Jaquier, M.-J.; Le Men-Olivier, L.; Delaude, C. Heterocycles 1989, 29, 1435.

[7] Isolation and characterization of echitamine: (a) Goodson, J. A.; Henry, T. A. J. Chem. Soc. 1925, 127, 1640;

(b) Goodson, J. A. J. Chem. Soc. 1932, 134, 1640;

(c) Manobar, H.; Ramaseshan, S. Tetrahedron Lett. 1961, 2, 814;

(d) Chinese Pharmacopoeia, Vol. 1, Ed.: Committee of Chinese Pharmacopoeia, China People’s Medical Publishing House, Beijing, 1977, pp. 245~245;

(e) Li, C.-M.; Zhang, X.-M.; Zhou, Y.-J.; Huang, L.-Y.; Tao, G.-D. Acta Pharm. Sin. 1993, 1, 512;

(f) Du, G.-S.; Shang, J.-H.; Chai, X.-H.; Luo, X.-D. Acta Bot. Yunnanica 2007, 29, 366.

[8] (a) Mok?ý, J.; Dúbravková, L.; Šef?ovi?, P. Experientia 1962, 18, 564;

(b) Das, B. C.; Cosson, J. P.; Lukacs, G.; Potier, P. Tetrahedron Lett. 1974, 15, 4299;

(c) Mamatas-Kalamaras, S.; Sevenet, T.; Thal, C.; Potier, P. Phytochemistry 1975, 14, 1637;

(d) Morfaux, A. M.; Mouton, P.; Gassiot, G.; Le Men-Oliver, L. Phytochemistry 1992, 31, 1079. Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131, 6013.

文章导航

/