研究论文

实验和理论研究石墨烯氧化物的铁电性

  • 孔祥恺 ,
  • 陈乾旺
展开
  • a 合肥微尺度物质科学国家实验室 中国科学技术大学材料科学与工程系 合肥 230026;
    b 中国科学院合肥物质科学研究院 合肥 230031

收稿日期: 2012-09-24

  网络出版日期: 2013-01-09

基金资助

项目受国家自然科学基金(Nos.21071137,U1232211)资助.

Experimental and Theoretical Investigations on the Ferroelectricity of Graphene Oxides

  • Kong Xiangkai ,
  • Chen Qianwang
Expand
  • a Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China;
    b Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China

Received date: 2012-09-24

  Online published: 2013-01-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21071137, U1232211).

摘要

基于独特的结构和性质, 石墨烯在很多领域都表现出了巨大的潜力. 作为制备石墨烯的主要母体材料, 石墨烯氧化物在室温条件下被观测到具有弱的铁电性. 石墨烯氧化物的表面和边界上会存在大量的羟基, 这些羟基有序重复排列而构成了一维的氢键链, 这些有序氢键链可能是石墨烯氧化物呈现铁电性能的主要原因.

本文引用格式

孔祥恺 , 陈乾旺 . 实验和理论研究石墨烯氧化物的铁电性[J]. 化学学报, 2013 , 71(03) : 381 -386 . DOI: 10.6023/A12090707

Abstract

Graphene shows promise as a functional material in wide fields owing to its unique structures and properties. Here, as its parent material, graphene oxides have been observed exhibiting weak ferroelectric properties at room temperature. It is found that the one-dimensional hydrogen-bond chains generated by hydroxyls arranged in an orderly repeating pattern may play the key role in the electric ordering and may be responsible for this novel property of graphene oxide nano-ribbons.

参考文献

[1] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2002, 6, 183.

[2] Castro Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109.

[3] Sharifi, F.; Bauld, R.; Ahmed, M. S.; Fanchini, G. Small 2012, 8, 699.

[4] Zheng, Y.; Ni, G. X.; Toh, C. T.; Zeng, Z. G.; Chen, S. T.; Yao, K.; Ozyilmaz, B. Appl. Phys. Lett. 2009, 94, 163505.

[5] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.

[6] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.

[7] Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. Nature 2011, 479, 338.

[8] Bolotin, K. I. Solid State Commun. 2008, 146, 351.

[9] Wu, M. H.; Wu, X. J.; Zeng, X. C. J. Phys. Chem. C 2010, 114, 3937.

[10] Son, Y. W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347.

[11] Kan, E. J.; Li, Z. Y.; Yang, J. L.; Hou, J .G. Appl. Phys. Lett. 2007, 91, 243116.

[12] Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.

[13] Tada, K.; Haruyama, J.; Yang, H. X.; Chshiev, M.; Matsui, T.; Fukuyama, H. Appl. Phys. Lett. 2011, 99, 183111.

[14] Liu, Z. B.; Wang, Y.; Zhang, X. L.; Xu, Y. F.; Chen, Y. S.; Tian, J. G. Appl. Phys. Lett. 2009, 94, 021902.

[15] Ahn, C. H.; Rabe, K. M.; Triscone, J. M. Science 2004, 303, 488.

[16] Horiuchi, S.; Tokura, Y. Nat. Mater. 2008, 7, 357.

[17] Xu, G. C.; Ma, X. M.; Zhang, L.; Wang, Z. M.; Gao, S. J. Am. Chem. Soc. 2010, 132, 9588.

[18] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Nature 2010, 463, 789.

[19] Naber, R. C. G. Nat. Mater. 2005, 4, 243.

[20] Slater, J. C. J. Chem. Phys. 1941, 9, 16.

[21] Horiuchi, S.; Kumai, R.; Tokura, Y. Angew. Chem., Int. Ed. 2007, 46, 3497.

[22] Kumai, R.; Horiuchi, S.; Okimoto, Y. J. Chem. Phys. 2006, 125, 084715.

[23] Chen, Q. W.; Li, X. G.; Zhang, Y. H.; Qian, Y. T. Adv. Mater. 2002, 14, 134.

[24] Bao, C. L.; Song, L.; Xing, W. Y.; Yuan, B. H.; Wilkie, C. A.; Huang, J. L.; Guo, Y. Q.; Hu, Y. J. Mater. Chem. 2012, 22, 6088.

[25] Structural and Optical Properties of Porous Silicon Nanostructures, Eds.: Amato, G.; Delerue, C.; Von Bardeleben, H. J., Gordon and Breach Science Publishers, London, 1997.

[26] Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. J. Am. Chem. Soc. 2009, 131, 12838.

[27] Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. ACS nano 2010, 4, 3979.

[28] Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; Chung, T. F.; Peng, P.; Guisinger, N. P.; Stach, E. A.; Bao, J.; Pei, S. S.; Chen, Y. P. Nat. Mater. 2011, 10, 443.

[29] Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.

[30] Szabo, T.; Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I. Chem. Mater. 2006, 18, 2740.

[31] Scholz, W.; Boehm, H. P. Z. Anorg. Allg. Chem. 1969, 369, 327.

文章导航

/