研究论文

三维金纳米团簇/多壁碳纳米管-Nafion膜修饰电极的电化学制备及血红蛋白的直接电化学

  • 赵越 ,
  • 洪波 ,
  • 范楼珍
展开
  • a 中国海洋大学环境科学与工程学院 青岛 266100;
    b 北京师范大学化学学院 北京 100875

收稿日期: 2012-11-06

  网络出版日期: 2013-01-09

基金资助

国家自然基金(No. 41201569/D011102)和中央高校基本科研业务费实验室研究基金项目(No. 201251007).

Electrodeposition of Gold Nanoparticle Clusters on Multi-Wall Carbon Nanotubes and the Direct Electrochemistry of Hemoglobin

  • Zhao Yue ,
  • Hong Bo ,
  • Fan Louzhen
Expand
  • a College of Environmental Science and Technology, Ocean University of China, Qingdao 266100;
    b College of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2012-11-06

  Online published: 2013-01-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 41201569/D011102) and the Fundamental Research Funds for the Central Universities (No. 201251007).

摘要

用改进的全电化学三步法制备三维金纳米团簇/多壁碳纳米管(3D Au/MWCNTs)纳米复合材料, 并用Nafion (Nafion)膜进行涂布固定, 制得3D Au/MWCNTs-Nafion修饰电极. 利用透射电子显微镜(TEM)和能量色散光谱(EDS)对所得纳米复合材料的形貌进行表征. 3D Au/MWCNTs具有金纳米核团簇而成的特殊圆丘状三维结构, 电化学活性表面积(ECSA)比均匀分散的Au/MWCNTs提高了一个数量级, 可有效提高血红蛋白(Hb)在电极表面的负载量. 运用循环伏安法和计时电流法对3D Au/MWCNTs-Nafion修饰电极的生物电催化性质进行研究, 其在Hb溶液中显示了良好的电催化活性和稳定性: 还原氧化峰电流高, 反应可逆性好, 提供了有利于Hb直接电子转移的电化学环境. 固载于Au/MWCNTs-Nafion上的Hb能够保持其生物活性, 对双氧水(H2O2)表现出良好的催化性能, 这是3D Au纳米团簇和MWCNTs共同作用的结果. 实验表明, 3D Au/MWCNTs-Nafion修饰电极结构特殊、性能优越, 对Hb的直接电化学研究具有积极的促进作用, 为准确高效的检测Hb及相关生物活性物质提供了新的电极选择.

本文引用格式

赵越 , 洪波 , 范楼珍 . 三维金纳米团簇/多壁碳纳米管-Nafion膜修饰电极的电化学制备及血红蛋白的直接电化学[J]. 化学学报, 2013 , 71(02) : 239 -245 . DOI: 10.6023/A12110877

Abstract

Three-dimensional structure gold nanoparticle clusters (3D Au) were electrodeposited onto multiwalled carbon nanotubes (MWCNTs) through improved three-step method, which involves: (1) potential cycling (CV, 200 mV·s-1) from +1.8 to -0.4 V was performed in 0.5 mol/L K2SO4 solutions for 10 min in order to produce oxide functional groups (carbonyl, hydroxyl, and carboxyl) at the defect sites located at the ends and/or the sidewalls of MWCNTs, (2) electrochemical oxidation of the Au(III) complex to the Au(V) complex from 2 mol/L K2PtCl4+0.1 mol/L K2SO4 aqueous solutions by using potential-step method (PS). The potential was jumped from 0.3 V to 1.1 V with different pulse width and this was repeated until a steady pulse current was reached. and (3) electrochemical transformation of the Au(V) complex to Au nanoparticle clusters on the surface of MWCNTs through cycling from +1.0 to -0.26 V in 0.1 mol/L H2SO4 solutions to the steady state. For comparison, however, experiments were also carried out with CV in the second step (2 mol/L K2PtCl4+0.1 mol/L K2SO4 aqueous solution with 190 cycles: these proved to be the optimal conditions). The morphology of 3D Au/MWCNTs electrode was characterized by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The voltammetric behavior of hemoglobin (Hb) on 3D Au/MWCNTs-Nafion has been investigated in 10 nmol/L Hb solution (pH=6 PBS) by cyclic voltammetry (CV) and current-time method (CT). Compared with Au+MWCNTs-Nafion (+means mix together), Au/MWCNTs-Nafion (uniform Au nanoparticle dispersion of MWCNTs, which was obtained when the second step adopts cyclic voltammetry instead of potential-step method), 3D Au/MWCNTs-Nafion gave a higher peak current and better reversibility. The higher sensitivity and lower detection limit show that 3D Au/MWCNTs-Nafion can offer a conductive microenvironment for the immobilized Hb to achieve direct electrochemistry. The average coverage (Γ) of Hb immobilized on 3D Au/MWCNTs-Nafion was calculated to be 7.65×10-9 mol·cm-2, testifies a high surface-to-volume ratio. Electron transfer rate constant (kS) was calculated to be 1.8 s-1, which was proved 3D Au/MWCNTs-Nafion is more conducive to direct electron transfer between Hb and the electrode. Hb/Au/MWCNTs-Nafion potential application towards the electrocatalytic reduction of H2O2 was also conducted to show immobilized Hb exhibits excellent biocompatibility and stability. Our work points to a new path for the preparation of 3D Au/MWCNTs nanocomposites, which are promising as electrocatalysts in direct electrochemistry of Hb.

参考文献

[1] Rives, V. Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, pp. 229~250.

[2] Feng, Y. J.; Williams, G. R.; Leroux, F.; Taviot-Gueho, C.; O’Hare, D. Chem. Mater. 2006, 18, 4312.

[3] Kwak, S. Y.; Jeong, Y. J.; Park, J. S.; Choy, J. H. Solid State Ionics 2002, 151, 229.

[4] Kwak, S. Y.; Kriven, W. M.; Wallig, M. A.; Choy, J. H. Biomaterials 2004, 25, 5995.

[5] Ambrogi, V.; Fardella, G.; Grandolini, G.; Nocchetti, M.; Perioli, L. Int. J. Pharm. 2001, 220, 23.

[6] Tyner, K. M.; Schiffman, S. R.; Giannelis, E. P. J. Controlled Release 2004, 95, 501.

[7] Zheng, H. Medicinal Chemistry, 6th ed., People's Medical Publishing House, Beijing, 2007, pp. 241~242. (郑虎, 药物化学, 第6版, 人民卫生出版社, 北京, 2007, pp. 241~242.)

[8] Oh, J. M.; Park, M.; Kim, S. T.; Jung, J. Y.; Kang, Y. G.; Choy, J. H. J. Phys. Chem. Solids 2006, 67, 1024.

[9] Lu, J.; Liu, Q.-F.; Luo, G.-A.; Wang, Y.-M. Chin. J. Org. Chem. 2009, 29, 1167. (路娟, 刘清飞, 罗国安, 王义明, 有机化学, 2009, 29, 1167.)

[10] Wang, J.-Q.; Li, X.; Li, S.-P.; Zhong, H. Acta Chim. Sinica 2011, 69, 137. (王继芹, 李鑫, 李淑萍, 仲慧, 化学学报, 2011, 69, 137.)

[11] Jin, L.; Liu, Q.; Sun, Z.-Y.; Ni, X.-Y.; Wei, M. Ind. Eng. Chem. Res. 2010, 49, 11176.

[12] Aisawa, S.; Ohnuma, Y.; Hirose, K.; Takahashi, S.; Hirahara, H.; Narita, E. Appl. Clay Sci. 2005, 28, 137.

[13] Aisawa, S.; Takahashi, S.; Ogasawara, W. J. Solid State Chem. 2001, 162, 52.

[14] Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.

[15] Zhu, W.-X.; Sun, D.-J.; Liu, S.-Y.; Wang, N.; Zhang, J.; Luan, L.-Y. Colloids Surf. A: Physicochem. Eng. Aspects 2007, 301, 106.

[16] Oh, J. M.; Choi, S. J.; Kim, S. T.; Choy, J. H. Bioconjugate Chem. 2006, 17, 1411.

[17] Yao, G.-Y.; Li, Y.-B.; Lu, B.-D.; Wei, Z.-X. Chin. J. Rare Met. 2007, 31, 192. (姚根有, 李延斌, 逯宝娣, 卫芝贤, 稀有金属, 2007, 31, 192.)

[18] Hu, D.-W.; Wang, Y.-M. J. Chin. Ceram. Soc. 2008, 36, 1488. (胡大为, 王燕民, 硅酸盐学报, 2008, 36, 1488.)

[19] Wen, Y.-M.; Lu, Z.-Q. Chem. Res. Appl. 2002, 14, 563. (温燕梅, 卢泽勤, 化学研究与应用, 2002, 14, 563.)

[20] Wang, J.; Peng, Z.-M.; Huang, Y.-J.; Chen, Q.-W. J. Cryst. Growth 2004, 263, 616.

[21] Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M. P.; Waychunas, G. A.; Banfield, J. F. Geochem. Trans. 2003, 4, 20.

[22] Liu, Z.-P.; Ma, R.-Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872.

[23] Xu, Z.-P.; Stevenson, G. S.; Lu, C. Q.; Lu, G.-Q. J. Phys. Chem. B 2006, 110, 16923.

[24] Yang, Q.-Z.; Sun, D.-J.; Zhang, C.-G.; Wang, X.-J.; Zhao, W.-A. Langmuir 2003, 19, 5570.

[25] Valente, J. S.; Sa?nchez-Cantu?, M.; Lima, E.; Figueras, F. Chem. Mater. 2009, 21, 5809.

[26] Li, C.; Wang, L.-Y.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2009, 48, 2162.

[27] Choy, J. H.; Jung, J. S.; Oh, J. M.; Park, M.; Jeong, J.; Kang, Y. K.; Han, O. J. Biomaterials 2004, 25, 3059.

[28] Li, Y.-H.; Xu, J.; Zhang, S.-J.; Li, D.-X.; Zheng, B.; Hou, W.-G. Chin. J. Inorg. Chem. 2009, 25, 2124. (李艳红, 徐洁, 张少杰, 李东祥, 郑斌, 侯万国, 无机化学学报, 2009, 25, 2124.)

[29] Kong, X.-G.; Jin, L.; Wei, M.; Duan, X. Appl. Clay Sci. 2010, 49, 324.

[30] Zhang, X.-Q.; Qi, F.-L.; Li, S.-P.; Wei, S.-H.; Zhou, J.-H. Appl. Surf. Sci. 2012, 259, 245.

[31] Wang, Y.-S.; Han, Y.-L.; Li, Y.-X.; Wang, Y.-M.; Li, R.-S. Chem. J. Chin. Univ. 2007, 28, 1092. (王银松, 韩月莲, 李英霞, 王玉玫, 李荣珊, 高等学校化学学报, 2007, 28, 1092.)

文章导航

/