研究论文

三维荧光二阶校正同时测定人体液中伊立替康及其代谢物7-乙基-10-羟基喜树碱的含量

  • 尹小丽 ,
  • 吴海龙 ,
  • 张晓华 ,
  • 谷惠文 ,
  • 俞汝勤
展开
  • 化学生物传感与计量学国家重点实验室 湖南大学化学化工学院 长沙 410082

收稿日期: 2013-01-16

  网络出版日期: 2013-01-31

基金资助

项目受国家自然科学基金(No. 21175041)和中国科技部“973”计划(No. 2012CB910602)以及国家自然科学基金创新研究群体科学基金(No. 21221003)资助.

Simultaneous Determination of Irinotecan and Its Metabolite 7-Ethyl-10-hydroxycamptothecin in Biological Fluids Using Excitation-emission Matrix Fluorescence Coupled with Second-order Calibration Method

  • Yin Xiaoli ,
  • Wu Hailong ,
  • Zhang Xiaohua ,
  • Gu Huiwen ,
  • Yu Ruqin
Expand
  • State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering,Hunan University, Changsha 410082

Received date: 2013-01-16

  Online published: 2013-01-31

Supported by

Project supported by the National Natural Science Foundation of China (No. 21175041) and the National Basic Research Program (No. 2012CB910602) as well as the Innovative Research Groups of NSFC (No. 21221003).

摘要

提出了激发发射矩阵荧光光谱与化学计量学二阶校正方法相结合用于同时快速定量人体液(血浆和尿液)中的伊立替康(CPT11)和其主要代谢产物7-乙基-10-羟基喜树碱(SN38)的绿色、高灵敏分析策略. 尽管其分析物之间以及分析物和背景之间的光谱存在严重重叠现象, 采用基于交替归一加权残差(ANWE)算法的二阶校正方法进行解析仍能得到令人满意的定性定量分析结果. 当该体系的组分数选取为3时, 可以得到血浆和尿液中CPT11的平均回收率分别为(96.8±6.3)%和(101.7±1.1)%, SN38在血浆和尿液中的平均回收率分别为(100.4±4.9)%和(101.6±1.1)%. 另外, 通过品质因子, 如灵敏度(SEN)、选择性(SEL)、检测下限(LOD)和定量检测限(LOQ)评估了该方法的准确性. 实验结果表明, 该方法能以“数学分离”代替繁琐的“物理和化学分离”, 成功地解决实际复杂体系中内源干扰物质与分析物光谱重叠所引起的难分辨的问题, 可用于人体液中CPT11和SN38含量的直接快速定量测定.

本文引用格式

尹小丽 , 吴海龙 , 张晓华 , 谷惠文 , 俞汝勤 . 三维荧光二阶校正同时测定人体液中伊立替康及其代谢物7-乙基-10-羟基喜树碱的含量[J]. 化学学报, 2013 , 71(04) : 560 -566 . DOI: 10.6023/A13010084

Abstract

Irinotecan (CPT-11) belongs to the class of topoisomerase I inhibitors, which is an anticancer agent widely employed in the treatment of colorectal, lung, cervical, and ovarian cancer. 7-Ethyl-10-hydroxycamptothecin (SN38) is a main metabolite of CPT-11 in human body, which is approximately 100~1000-fold more cytotoxic than the parent drug. Several analytical techniques such as HPLC, LC-MS/MS have been proposed for determination of CPT-11 and SN38 in biological samples. But all of these methods are not only expensive, but also involve careful sample pretreatment or rigorous liquid chromatographic separation steps when conducting the experiments in the practical application. In this paper, a new and effective strategy that combines the excitation-emission matrix fluorescence (EEMF) with second-order calibration method based on alternating normalization-weighted error (ANWE) algorithm was developed for simultaneous determination of CPT-11 and SN38 in body fluids including human plasma and urine samples. Although the fluorescence spectra of CPT-11 and SN38 overlapped and unknown and uncalibrated fluorescent components coexisted in the matrices, the methodology enables accurate concentrations together with reasonable resolution of excitation and emission profiles for the compounds of interest, which is often referred to as the “second-order advantage”. The assay was linear over the concentration range of 0.0141~0.0987 μg/mL for CPT-11 and 0.04~0.28 μg/mL for SN 38, respectively. When the component number was chosen to 3, the obtained average recoveries were (96.8±6.3)% and (101.7±1.1)% for CPT11, (100.4±4.9)% and (101.6±1.1)% for SN38 in plasma and urine, respectively. In order to evaluate the performances of the proposed approach, the figures of merit such as sensitivity, selectivity, limit of detection and limit of quantification were investigated. The satisfactory qualitative and quantitative results indicated that it is an attractive alternative strategy for the routine resolution and quantification of CPT-11 and its metabolite SN 38 even in the presence of unknown interferences or when complete separation is not easily achieved.

参考文献

[1] Wall, M. E.; Wani, M.; Cook, C.; Palmer, K. H.; McPhail, A.; Sim, G. J. Am. Chem. Soc. 1966, 88, 3888.

[2] Hsiang, Y. H.; Hertzberg, R.; Hecht, S.; Liu, L. J. Biol. Chem. 1985, 260, 14873.

[3] Langer, C. J.; Manola, J.; Bernardo, P.; Kugler, J. W.; Bonomi, P.; Cella, D.; Johnson, D. H. J. Natl. Cancer Inst. 2002, 94, 173.

[4] Verschraegen, C. F. Oncology (Williston Park, NY). 2002, 16, 32.

[5] Wagener, D. J. T.; Verdonk, H.; Dirix, L.; Catimel, G.; Siegenthaler, P.; Buitenhuis, M.; Mathieu-Boue, A.; Verweij, J. Ann. Oncol. 1995, 6, 129.

[6] Mathijssen, R. H. J.; van Alphen, R. J.; Verweij, J.; Loos, W. J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clin. Cancer Res. 2001, 7, 2182.

[7] Nakagawa, H.; Saito, H.; Ikegami, Y.; Aida-Hyugaji, S.; Sawada, S.; Ishikawa, T. Cancer Lett. 2006, 234, 81.

[8] Rothenberg, M. L. The Oncologist. 2001, 6, 66.

[9] Yang, X.; Hu, Z.; Chan, S. Y.; Goh, B. C.; Duan, W.; Chan, E.; Zhou, S. J. Chromatogr. B 2005, 821, 221.

[10] Bardin, S.; Guo, W.; Johnson, J. L.; Khan, S.; Ahmad, A.; Duggan, J. X.; Ayoub, J.; Ahmad, I. J. Chromatogr. A 2005, 1073, 249.

[11] Zhang, Z.; Yao, J.; Wu, X.; Zou, J.; Zhu, J. Chromatographia 2009, 70, 399.

[12] Goldwirt, L.; Lemaitre, F.; Zahr, N.; Farinotti, R.; Fernandez, C. J. Pharmaceut. Biomed. 2012, 66, 325.

[13] Rodríguez-Cáceres, M.; Durán-Merás, I.; Soto, N. E. O.; de Alba, P.; Martínez, L. L. Talanta 2008, 74, 1484.

[14] Rodríguez-Cáceres, M. I.; Bohoyo Gil, D.; Durán-Merá, I.; Hurtado Sánchez, M. C. Appl. Spectrosc. 2011, 65, 298.

[15] Durán Martín-Merás, I.; Rodríguez-Cáceres, M. I.; Hurtado- Sánchez, M. C. Anal. Sci. 2011, 27, 745.

[16] Fu, H. Y.; Wu, H. L.; Nie, J. F.; Yu, Y. J.; Zou, H. Y.; Yu, R. Q. Chin. Chem. Lett. 2010, 21, 1482.

[17] Sánchez, M.; Merás, I. D.; Cáceres, M.; Girón, A. J.; Olivieri, A. Talanta 2011, 88, 609.

[18] Wu, H. L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1.

[19] Wu, H. L.; Yu, R. Q. Chemistry 2011, 74, 771. (吴海龙, 俞汝勤, 化学通报, 2011, 74, 771.)

[20] Wang, J. Y.; Wu, H. L.; Chen, Y.; Sun, Y. M.; Yu, Y. J.; Zhang, X. H.; Yu, R. Q. J. Chromatogr. A 2012, 1264, 63.



[21] Li, S. F.; Wu, H. L.; Xia, A. L.; Zhu, S. H.; Nie, J. F.; Bian, Y. C.; Liu, J.; Yu, R. Q. Acta Chim. Sinica 2008, 66, 947. (李淑芳, 吴海龙, 夏阿林, 朱绍华, 聂瑾芳, 边英超, 刘佳, 俞汝勤, 化学学报, 2008, 66, 947.)

[22] Su, Z. Y.; Wu, H. L.; Liu, Y. J.; Xu, H.; Zhang, J.; Nie, C. C.; Yu, R. Q. Acta Chim. Sinica 2012, 70, 459. (苏志义, 吴海龙, 刘亚娟, 许 慧, 张娟, 聂重重, 俞汝勤, 化学学报, 2012, 70, 459.)

[23] Xia, A. L.; Wu, H. L.; Zhu, S. H.; Han, Q. J.; Zhang, Y.; Yu, R. Q. Anal. Sci. 2008, 24, 1171.

[24] Chen, Z. P.; Liu, Z.; Cao, Y. Z.; Yu, R. Q. Anal. Chim. Acta 2001, 444, 295.

[25] Xie, H. P.; Jiang, J. H.; Long, N.; Shen, G. L.; Wu, H. L.; Yu, R. Q. Chemom. Intell. Lab. Syst. 2003, 66, 101.

[26] Hu, L. Q.; Wu, H. L.; Jiang, J. H.; Han, Q. J.; Xia, A. L.; Yu, R. Q. Talanta 2007, 71, 373.

[27] Xia, A. L.; Wu, H. L.; Zhang, Y.; Zhu, S. H.; Han, Q. J.; Yu, R. Q. Anal. Chim. Acta 2007, 598, 1.

[28] Bro, R.; Kiers, H. A. L. J. Chromatogr. 2003, 17, 274.

[29] Zou, H. Y.; Wu, H. L.; Li, Y. N.; Nie, J. F.; Fu, H. Y.; Li, S. F.; Yu, R. Q. Anal. Lett. 2010, 43, 2739.

[30] Qing, X. D.; Wu, H. L.; Li, Y. N.; Yu, R. Q. Scientia Sinica Chimica 2010, 40, 1. (卿湘东, 吴海龙, 李元娜, 俞汝勤, 中国科学: 化学 2010, 40, 1.)

[31] Shao, S. Z.; Wu, H. L.; Li, S. F.; Nie, J. F.; Wang, K. Y.; Liang, Y.; Yu, R. Q. J. Anal. Sci. 2010, 26, 373. (邵圣枝, 吴海龙, 李淑芳, 聂瑾芳, 王科云, 梁益, 俞汝勤, 分析科学学报, 2010, 26, 373.)

[32] Olivieri, A. C.; Faber, N. K. M. J. Chemom. 2005, 19, 583.

[33] Olivieri, A. C.; Faber, K. Anal. Chem. 2011, 84, 186.

[34] de la Peña, A. M.; Mansilla, A. E.; Gómez, D. G.; Olivieri, A. C.; Goicoechea, H. C. Anal. Chem. 2003, 75, 2640.

[35] Olivieri, A. C.; Faber, N. K. M. Chemom. Intell. Lab. Syst. 2004, 70, 75.

[36] Baylatry, M. T.; Joly, A. C.; Pelage, J. P.; Bengrine-Lefevre, L.; Prugnaud, J. L.; Laurent, A.; Fernandez, C. J. Chromatogr. B 2010, 878, 738. D’Esposito, F.; Tattam, B. N.; Ramzan, I.; Murray, M. J. Chromatogr. B 2008, 875, 522.
文章导航

/