研究论文

基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型

  • 李孟山 ,
  • 黄兴元 ,
  • 柳和生 ,
  • 柳炳祥 ,
  • 武燕 ,
  • 艾凡荣
展开
  • a 南昌大学机电工程学院 南昌 330031;
    b 景德镇陶瓷学院信息工程学院 景德镇 333001

收稿日期: 2013-02-15

  网络出版日期: 2013-03-15

基金资助

项目受国家自然科学基金(No. 20664002)和南昌大学研究生创新专项资金(No. cx2012011)资助.

Solubility Prediction of Gases in Polymers based on Chaotic Self-adaptive Particle Swarm Optimization Artificial Neural Networks

  • Li Mengshan ,
  • Huang Xingyuan ,
  • Liu Hesheng ,
  • Liu Bingxiang ,
  • Wu Yan ,
  • Ai Fanrong
Expand
  • a Nanchang University, College of Mechanical and Electric Engineering, Nanchang 330031;
    b JingDeZhen Ceramic Institute, School of Information Engineering, JingDeZhen 333001

Received date: 2013-02-15

  Online published: 2013-03-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 20664002) and Graduate Student Innovation Fund by Nanchang University (No. cx2012011).

摘要

为提高溶解预测模型的效率和关联度, 建立基于混沌理论、自适应粒子群优化(PSO)算法和反向传播(BP)算法的混沌自适应PSO-BP神经网络模型, 并对二氧化碳(CO2)在聚苯乙烯(PS)和聚丙烯(PP)中、氮气(N2)在PS中的溶解度进行预测试验. 模型选用压力和温度作为输入参数, 使用试探法确定隐含层结点个数为8, 输出为预测的溶解度. 模型融合混沌理论、自适应PSO和BP算法各自的优势, 提高了训练速度和预测精度. 结果表明, 混沌自适应PSO-BP神经网络有很好的预测能力, 预测值与实验值相当吻合, 通过与传统BP神经网络和PSO-BP神经网络的比较可知, 其预测精度和相关性均明显较优, 预测平均绝对误差(AAD), 标准偏差(SD)和平方相关系数(R2)分别为0.0058, 0.0198和0.9914.

本文引用格式

李孟山 , 黄兴元 , 柳和生 , 柳炳祥 , 武燕 , 艾凡荣 . 基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型[J]. 化学学报, 2013 , 71(07) : 1053 -1058 . DOI: 10.6023/A13020193

Abstract

Solubility is one of the most important physicochemical properties of polymer compounds, which determines the compatibility of blending system. To enhance the performance of artificial neural networks (ANN) and improve the efficiency and correlation of prediction of gas solubility in polymers, in this work, a novel ANN model based on chaos theory, self-adaptive particle swarm optimization (PSO) algorithm and back propagation (BP) algorithm is proposed, hereafter called CSAPSO-BP ANN. In the CSAPSO-BP ANN, the conventional PSO algorithm is modified by using chaos theory and self-adaptive inertia weight factor to overcome its premature convergence problem. Then the CSAPSO-BP ANN trained by hybrid algorithm which combined the modified PSO and BP algorithm has been employed to investigate carbon dioxide (CO2) solubility in polystyrene (PS), polypropylene (PP) and nitrogen (N2) solubility in PS, respectively. The CSAPSO-BP ANN model which consisted of three layers with one hidden layer, two input nodes including temperature and pressure, 8 hidden nodes which obtained by heuristics and one output node that is the solubility of gases in polymers was designed. The model combined the abilities of chaos theory, PSO algorithm and BP algorithm, accelerated the training speed of ANN and improved the prediction accuracy. Results obtained in this work indicate that the CSAPSO-BP ANN is an effective method for prediction of gas solubility in polymers in a wide range of pressure and temperature. The comparison between different neural networks was carried out in detail to reveal the proposed CSAPSO-BP ANN outperforms the traditional BP NN and PSO-BP NN. The values of average absolute deviation (AAD), standard deviation (SD) and squared correlation coefficient (R2) are 0.0058, 0.0198 and 0.9914, respectively. The statistical data demonstrate that the CSAPSO-BP ANN model is a faster, more reliable and accurate method, and has an excellent prediction capability with high-accuracy and has a good correlation between prediction values and experimental data.

参考文献

[1] Merker, T.; Vrabec, J.; Hasse, H. Fluid Phase Equilib. 2012, 315, 77.
[2] Wang, J.; Zhu, W. L.; Zhang, H. T.; Park, C. B. Chem. Eng. Sci. 2012, 75, 390.
[3] Liu, S.; Zhang, J.; Zhang, Y.; Qin, L. Acta Chim. Sinica 2012, 70, 1511. (刘树深, 张瑾, 张亚辉, 覃礼堂, 化学学报, 2012, 70, 1511.)
[4] Yu, X. Acta Chim. Sinica 2010, 68, 2264. (禹新良, 化学学报, 2010, 68, 2264.)
[5] Nalawade, S. P.; Picchioni, F.; Janssen, L. Prog. Polym. Sci. 2006, 31, 19.
[6] Li, D. C.; Liu, T.; Zhao, L.; Yuan, W. K. Ind. Eng. Chem. Res. 2009, 48, 7117.
[7] Lei, Z. G.; Ohyabu, H.; Sato, Y.; Inomata, H.; Smith, R. L. J. Supercrit. Fluids 2007, 40, 452.
[8] Bian, X.; Du, Z.; Tang, Y. Petrochem. Technol. 2011, 40, 536. (卞小强, 杜志敏, 汤勇, 石油化工, 2011, 40, 536.)
[9] Zhang, Q.; Feng, X.; Long, H.; Suo, J.; Zhang, D.; Xu, L.; Xu, L. Acta Chim. Sinica 2012, 70, 989. (张庆友, 冯秀林, 龙海林, 索净洁, 张丹丹, 许力壮, 许禄, 化学学报, 2012, 70, 989.)
[10] Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Ind. Eng. Chem. Res. 2011, 50, 221.
[11] Ma, Y.; Shi, W.; Zhao, C.; Yang, D.; Lu, Q.; Li, S.; Tu, J.; Wang, W.; Fan, Z. Acta Chim. Sinica 2011, 69, 719. (马艳, 石文鹏, 赵辰阳, 杨冬梅, 逯琪, 李速明, 涂建军, 王巍, 范仲勇, 化学学报, 2011, 69, 719.)
[12] Yu, D.; Zhou, G.; Ji, F.; Li, S.; Yang, D.; Wang, T.; Cao, L. Acta Chim. Sinica 2011, 69, 960. (虞丹尼, 周光明, 吉芳英, 黎司, 杨大成, 王图锦, 曹琳, 化学学报, 2011, 69, 960.)
[13] Bakhbakhi, Y. Math. Comput. Model. 2012, 55, 1932.
[14] Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. R. Fluid Phase Equilib. 2011, 308, 35.
[15] Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A. H.; Richon, D. Chem. Eng. Sci. 2011, 66, 3039.
[16] Yun, T.; Junsong, L. U. O. Comput. Simul. 2011, 28, 219.
[17] Ding, H.; Wu, J.; Li, X. In Advances in Swarm Intelligence. Third International Conference, Eds.: Tan, Y.; Shi, J.; Ji, Z., Springer-Verlag, Shenzhen, 2012, pp. 444~451.
[18] Ahmadi, M. A. Fluid Phase Equilib. 2012, 314, 46.
[19] Zhang, J. R.; Zhang, J.; Lok, T. M.; Lyu, M. R. Appl. Math. Comput. 2007, 185, 1026.
[20] Sun, Y.; Wang, Z.; Qi, G.; Van Wyk, B. J. Eng. Optimiz. 2011, 43, 19.
[21] Hilic, S.; Boyer, S.; Padua, A.; Grolier, J. J. Polym. Sci. B-Polym. Phys. 2001, 39, 2063.
[22] Sato, Y.; Yurugi, M.; Fujiwara, K.; Takishima, S.; Masuoka, H. Fluid Phase Equilib. 1996, 125, 129.
[23] Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. J. Supercrit. Fluids 2001, 19, 187.
[24] Khajeh, A.; Modarress, H.; Mohsen-Nia, M. Iran. Polym. J. 2007, 16, 759.
[25] Sato, Y.; Fujiwara, K.; Takikawa, T.; Sumarno; Takishima, S.; Masuoka, H. Fluid Phase Equilib. 1999, 162, 261.
[26] Newitt, D. M.; Weale, K. E. J. Chem. Soc. 1948, 1039, 1541.
文章导航

/