研究论文

分子印迹电化学传感器选择性识别及电催化检测多巴胺

  • 魏小平 ,
  • 常川 ,
  • 李建平
展开
  • 桂林理工大学化学与生物工程学院 桂林 541004

收稿日期: 2012-12-28

  网络出版日期: 2013-03-26

基金资助

项目受国家自然科学基金(No. 21165007)和广西自然科学基金(No. 2012GXNSFAA053032)资助.

A Molecular Imprinted Electrochemical Sensor For Selectively and Electro-catalytically Voltammetric Determination of Dopamine

  • Wei Xiaoping ,
  • Chang Chuan ,
  • Li Jianping
Expand
  • College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004

Received date: 2012-12-28

  Online published: 2013-03-26

Supported by

Project supported by the Natural Science Foundation of China (No. 21165007) and Guangxi Natural Science Foundation (No. 2012GXNSFAA053032).

摘要

以多巴胺为模板分子、溴酚蓝为单体, 在玻碳电极表面制得分子印迹膜. 洗脱后重新吸附多巴胺分子, 同时利用聚溴酚蓝膜对多巴胺氧化的电催化作用, 对多巴胺进行定量分析. 多巴胺在0~1.2×10-6 mol/L浓度范围内与电流变化值有线性关系. 由于印迹膜的催化作用, 检出限达1.62×10-10 mol/L. 该传感器可用于选择性测定多巴胺, 抗坏血酸和尿酸等共存物不干扰测定. 利用该传感器直接测定了血清中多巴胺含量, 回收率在95.2%~103.0%之间.

本文引用格式

魏小平 , 常川 , 李建平 . 分子印迹电化学传感器选择性识别及电催化检测多巴胺[J]. 化学学报, 2013 , 71(06) : 951 -956 . DOI: 10.6023/A12121087

Abstract

A novel strategy for improving the sensitivity of molecular imprinted electrochemical sensor was proposed and dopamine (DA) was selected as the template molecular in this assay. The electroactive membrane of poly-bromophenol blue (BB) which was polymerized on the electrode surface acted as molecular imprinted membrane of DA. To prepare poly-BB-DA molecularly imprinted polymer (MIP), CV scans were performed for 30 cycles in the potential range between -1.0 and 1.8 V at 50 mV/s in an acetate buffer solution (pH=4.0) containing 1.0×10-3 mol/L DA and 3.0×10-3 mol/L BB at 25 ℃. The MIP electrode was washed by methanol (50% in volume) for 12 min to remove template molecules. Differential pulse voltammetry (DPV) was performed after the rebinding reaction of the DA and the MIP membrane in DA sample solutions for 6 min. With the increasing of the DA concentration, the binding sites in the membrane taken by DA molecules also increased, so was the peak current in the DPV analysis. The sensitivity was improved significantly due to the signal amplifying effect produced by the catalytic effect of electro oxidation of dopamine on BB membrane. The experimental conditions were also optimized. Electrochemical measurements for the MIP membrane characterization were carried out in the supporting electrolyte of 0.01 mol/L K3[Fe(CN)6] solution containing 0.5 mol/L KCl. CV was performed from -0.2 to 0.6 V at a scan rate of 100 mV/s. DPV was performed in the supporting electrolyte of 0.1 mol/L PBS (pH 7.4) over a potential range of -0.1 to 0.6 V, with the pulse amplitude of 50 mV and the scan rate of 50 mV/s. All measurements were carried out at room temperature (25 ℃). DA was determined by DPV, and there was a linear relationship between oxidation currents and DA concentrations in the range of 0~1.2×10-6 mol/L with a detection limit of 1.62×10-10 mol/L. This is one of the most sensitive sensors for DA determination due to the catalytic oxidation of DA on electroactive MIP.

参考文献

[1] Suryanarayanan, V.; Wu, C. T.; Ho, K. C. Electroanalysis 2010, 22, 1795.

[2] Malitesta, C.; Mazzotta, E.; Picca, R. A.; Poma, A.; Chianella, I.; Piletsky, S. A. Anal. Bioanal. Chem. 2012, 402, 1827.

[3] Spivak, D. A.; Shea, K. J. J. Mol. Recognit. 2012, 25, 319.

[4] Pardieu, E.; Cheap, H.; Vedrine, C.; Lazerges, M.; Lattach, Y.; Garnier, F.; Remita, S.; Pernelle, C. Anal. Chim. Acta 2009, 649, 236.

[5] Kan, X. Q.; Zhang, Z.; Wang, Z.; Zhu, J. J. Talanta 2008, 75, 22.

[6] Li, H. X.; Xu, X. L.; Chen, H.; Zhang, S.; Kong, J. L. Chin. J. Anal. Chem. 2012, 40, 817. (李会香, 许小丽, 陈惠, 张松, 孔继烈, 分析化学, 2012, 40, 817.)

[7] Figueiredo, E. C.; Sanvido, G. B.; Arruda, M. A.; Eberlin, M. N. Analyst 2010, 135, 726.

[8] Hu, Y.; Zhang, Z.; Li, J.; Zhang, H.; Luo, L.; Yao, S. Biosens. Bioelectron. 2012, 31, 190.

[9] Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. Talanta 2009, 78, 327.

[10] Li, J. P.; Jiang, F. Y.; Wei, X. P. Anal. Chem. 2010, 82, 6074.

[11] Li, J. P.; Li, Y. P.; Wei, X. P. Acta Chim. Sinica 2012, 70, 1853. (李建平, 李玉平, 魏小平, 化学学报, 2012, 70, 1853.)

[12] Li, J. P.; Li, Y. P.; Zhang, Y.; Wei, G. Anal. Chem. 2012, 84, 1888.

[13] Pesavento, M.; D'Agostino, G.; Biesuz, R.; Alberti, G.; Profumo, A. Electroanalysis 2012, 24, 813.

[14] Atta, N. F.; Abdel-Mageed, A. M. Talanta 2009, 80, 511.

[15] Song, W.; Chen, Y.; Xu, J.; Yang, X. R.; Tian, D. B. J. Solid State Electrochem. 2010, 14, 1909.

[16] Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Maligaspe, E.; Zandler, M. E.; D'Souza, F. Bioelectrochemistry 2010, 80, 62.

[17] Li, J. P.; Zhao, J.; Wei, X. P. Sens. Actuators, B: Chem. 2009, 140, 663.

[18] Kan, X.; Zhou, H.; Li, C.; Zhu, A.; Xing, Z.; Zhao, Z. Electrochim. Acta 2012, 63, 69.

[19] Chen, W.; Lin, X. H.; Huang, L. Y.; Luo, H. B. Chin. J. Anal. Lab. 2005, 24, 4. (陈伟, 林新华, 黄丽英, 罗红斌, 分析试验室, 2005, 24, 4.)

[20] Hou, S. F.; Kasner, M. L.; Su, S. J.; Patel, K.; Cuellari, R. J. Phys. Chem. C 2010, 114, 14915.
文章导航

/