互穿结构及混合配体对金属-有机骨架材料分离性能的影响
收稿日期: 2013-01-25
网络出版日期: 2013-04-12
基金资助
项目受国家自然科学基金(Nos. 21006126, 21276272)、中国石油大学(北京)青年拔尖人才专项基金(BJBJRC-2010-01)、北京市科技新星计划(2010B069)和博士点基金新教师课题(20100007120009)资助.
Study on Separation Performance of Metal-organic Frameworks with Interpenetration and Mixed-ligand
Received date: 2013-01-25
Online published: 2013-04-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21006126, 21276272), the Research Funds of China University of Petroleum, Beijing (BJBJRC-2010-01), Beijing Nova Program (2010B069), and the Research Fund for the Doctoral Program of Higher Education (20100007120009).
在以前的工作中, 我们利用蒙特卡洛和分子动力学模拟计算了具有互穿性结构及混合配体的金属-有机骨架材料(metal-organic frameworks, MOFs)分离CH4/H2的吸附选择性及扩散选择性. 研究了材料的互穿结构及混合配体对材料用于分离CH4/H2性能的影响. 在本工作中, 我们将以前的工作进行了扩展, 详细研究了材料的互穿结构及混合配体对材料用于分离CO2/CH4, CO2/N2和CO2/H2等含有CO2的气体混合物性能的影响. 此外, 为了进一步阐明材料的结构对于其分离性能的影响, 我们亦研究了材料用于分离CH4/H2及CH4/N2. 从我们的结果可以看出, 相比无互穿结构的MOFs材料, 具有互穿结构的MOFs材料对所研究的所有混合气体的渗透选择性明显提高. 这是因为具有互穿结构的MOFs材料对混合气体的吸附选择性明显高于无互穿结构的MOFs材料. 结果表明, 如果将材料作为膜用于气体混合物分离, 使材料产生互穿结构是提高材料分离性能的一个很好的策略.
刘蓓 , 唐李兴 , 廉源会 , 李智 , 孙长宇 , 陈光进 . 互穿结构及混合配体对金属-有机骨架材料分离性能的影响[J]. 化学学报, 2013 , 71(06) : 920 -928 . DOI: 10.6023/A13010126
In our previous work, we have investigated the adsorption selectivity and diffusion selectivity of CH4/H2 in mixed-ligand interpenetrated metal-organic frameworks (MOFs) to investigate the effects of interpenetration as well as mixed-ligand on both equilibrium-based and kinetic-based gas mixture separation through Monte Carlo and molecular dynamics simulations. The potential of this kind of materials in equilibrium-based and kinetic-based separation applications was evaluated. In this work, we extend our previous work to CO2-related mixtures, like CO2/CH4, CO2/N2, and CO2/H2, as there is an urgent need to identify porous materials that can efficiently separate CO2 from mixtures of gases, such as flue gas and natural gas purification. To show a clearer correlation between gas mixture separation ability and material properties, CH4/H2 and CH4/N2 were also selected as the model mixtures to separate. A combined Monte Carlo and molecular dynamics simulation was carried out in eight MOFs with mixed-ligand and with or without interpenetration. Grand-canonical Monte Carlo (GCMC) simulations were employed to calculate the adsorption of mixtures in MOFs studied. Equilibrium molecular dynamics (MD) simulations were carried out in the canonical (NVT) ensemble to investigate the effects of interpenetration on the diffusion behaviors of mixtures. The adsorption selectivities of mixtures in the selected MOFs were studied in detail. In addition, the diffusion, the permeation selectivities of CH4/H2, CH4/N2, CO2/N2, and CO2/CH4 as well as the CH4 and CO2 permeability through the selected MOF membranes were calculated. We found for all mixtures studied, the permeation selectivities in the interpenetrated MOFs are much higher than those in their non-interpenetrated counterparts due to the larger adsorption selectivities in the former, indicating that interpenetration is a good strategy to improve the overall performance of a material as a membrane in separation applications. The knowledge obtained is expected to serve as the guidance for the development of appropriate interpenetrated MOF adsorbents and membranes.
[1] An, X. H.; Liu, D. H.; Zhong, C. L. Acta Phys.-Chim. Sin. 2011, 27(3), 553. (安晓辉, 刘大欢, 仲崇立, 物理化学学报, 2011, 27(3), 553.)
[2] Zhang, X. F.; An, X. H.; Liu, D. H.; Yang, Q. Y.; Yang, Z. H.; Zhong, C. L.; Lu, X. H. Acta Chim. Sinica 2011, 69(1), 84. (张秀芳, 安晓辉, 刘大欢, 阳庆元, 杨祝红, 仲崇立, 陆小华, 化学学报, 2011, 69(1), 84.)
[3] Liu, B.; Yang, Q. Y.; Xue, C. Y.; Zhong, C. L.; Chen, B. H.; Smit, B. J. Phys. Chem. C 2008, 112, 9854.
[4] Yang, Q. Y.; Xu, Q.; Liu, B.; Zhong, C. L.; Smit, B. Chin. J. Chem. Eng. 2009, 17(5), 781.
[5] Liu, B.; Sun, C. Y.; Chen, G. J. Chem. Eng. Sci. 2011, 66, 3012.
[6] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[7] Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. J. Am. Chem. Soc. 2010, 132, 950.
[8] Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2008, 47, 10223.
[9] Yang, Q.; Zhong, C. J. Phys. Chem. B 2005, 109(24), 11862.
[10] Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
[11] Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
[12] Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114(25), 10024.
[13] Yang, Q. Y.; Xu, Q.; Liu, B.; Zhong, C. L.; Smit, B. Chin. J. Chem. Eng. 2009, 17(5), 781.
[14] Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114(11), 5035.
[15] Zheng, C. C.; Zhong, C. L. J. Phys. Chem. C 2010, 114(21), 9945.
[16] Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., Academic Press, San Diego, CA, 2002.
[17] Martyna, G.; Tuckerman, M. E.; Toblas, D. J.; Klein, M. L. Mol. Phys. 1996, 87, 1117.
[18] Myers, A. L.; Monson, P. A. Langmuir 2002, 18, 10261.
[19] Babarao, R.; Jiang, J. W. Langmuir 2008, 24(10), 5474.
[20] Babarao, R.; Jiang, J. W. Energy Environ. Sci. 2008, 1, 139.
[21] Talu, O.; Myers, A. L. AIChE J. 2001, 47, 1160.
[22] Krishna, R.; van Baten, J. M. J. Membr. Sci. 2010, 360, 323.
[23] Keskin, S.; Sholl, D. S. Langmuir 2009, 25(19), 11786.
[24] Liu, B.; Yang, Q. Y.; Xue, C. Y.; Zhong, C. L.; Smit, B. Phys. Chem. Chem. Phys. 2008, 10, 3244.
[25] Xue, C. Y.; Zhou, Z.; Liu, B.; Yang, Q. Y.; Zhong, C. L. Mol. Simulat. 2009, 35(5), 373.
[26] Robeson, L. M. J. Membr. Sci. 2008, 320, 390.
[27] Keskin, S.; Sholl, D. S. Ind. Eng. Chem. Res. 2009, 48, 914.
[28] Keskin, S.; Liu, J. C.; Johnson, J. K.; Sholl, D. S. Microporous Mesoporous Mater. 2009, 125, 101.
[29] Keskin, S. J. Phys. Chem. C 2011, 115, 800.
/
| 〈 |
|
〉 |