研究论文

卤离子导向合成配位聚合物[Hg2X4(ppt)]n (X=I和Br; ppt=1-(4-吡啶基)-吡啶铵-4-硫醇盐)及不同的一维链状结构和三阶非线性光学响应

  • 倪春燕 ,
  • 陈阳 ,
  • 李端秀 ,
  • 任志刚 ,
  • 李红喜 ,
  • 孙真荣 ,
  • 郎建平
展开
  • a 苏州大学材料与化学化工学部 苏州 215123;
    b 中国科学院上海有机化学研究所金属有机化学国家重点实验室 上海 200032;
    c 华东师范大学物理系 上海 200062

收稿日期: 2013-03-14

  网络出版日期: 2013-05-02

基金资助

项目受国家自然科学基金(No. 21171124)及上海有机化学研究所金属有机化学重点实验室开放基金(No. 201201006)资助.

Halide-Directed Synthesis of Coordination Polymers [Hg2X4(ppt)]n (X=I and Br, ppt=1-(4-Pyridyl)-pyridinium-4-thiolate) with Different One-Dimensional Chain Structures and Third-Order Nonlinear Optical Properties

  • Ni Chunyan ,
  • Chen Yang ,
  • Li Duanxiu ,
  • Ren Zhigang ,
  • Li Hongxi ,
  • Sun Zhenrong ,
  • Lang Jianping
Expand
  • a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c Department of Physics, East China Normal University, Shanghai 200062

Received date: 2013-03-14

  Online published: 2013-05-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21171124) and the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. 201201006).

摘要

通过HgX2 (X=I, Br)与4,4'-二吡啶基二硫化物(dpds)在乙腈中的溶剂热反应, 得到二个含1-(4-吡啶基)-吡啶铵-4-硫醇盐(ppt)的一维配位聚合物: [Hg2I4(ppt)]n (1)和[Hg2Br4(ppt)]n (2). 在化合物12结构中ppt配体是由dpds在溶剂热反应条件下通过dpds的S—S键和S—C键切断然后进行重排在原位形成的. 化合物1具有非中心对称的一维Z字型链状结构, 化合物2则具有中心对称的一维Z字型链状结构. 用飞秒简并四波混频法测定了12溶液的三阶非线性光学性质, 化合物1具有较强的非线性光学响应, 而化合物2却没有非线性光学响应, 这种性质的差异可能由于碘离子是较溴离子更好的电子授体, 化合物1有较小的HOMO-LUMO能级, 更易发生电子在体系间跃迁, 更有效使用三线激发态吸收.

本文引用格式

倪春燕 , 陈阳 , 李端秀 , 任志刚 , 李红喜 , 孙真荣 , 郎建平 . 卤离子导向合成配位聚合物[Hg2X4(ppt)]n (X=I和Br; ppt=1-(4-吡啶基)-吡啶铵-4-硫醇盐)及不同的一维链状结构和三阶非线性光学响应[J]. 化学学报, 2013 , 71(06) : 906 -912 . DOI: 10.6023/A13030272

Abstract

Solvothermal reactions of HgX2 (X=I, Br) with 4,4'-dipyridyl disulfide (dpds) in acetonitrile gave rise to two one-dimensional polymers [Hg2X4(ppt)]n [ppt=1-(4-pyridyl)-pyridinium-4-thiolate; X=I (1), Br (2)]. In the structures of 1 and 2, the ppt ligand was in situ generated from the Hg(II)-engaged cleavage of both S—S and S—C bonds of dpds and the subsequent rearrangement reactions under solvothermal conditions. Although compounds 1 and 2 have similar chemical formula, 1 crystallizes in the orthorhombic space group Ima2 and holds a 1D non-centrosymmetric zigzag chain while 2 crystallizes in the orthorhombic space group Pnma and has a 1D centrosymmetric zigzag chain. Such a difference in structural symmetry between 1 and 2 may be due to the fact that the radius of iodide is larger than that of bromide. The third-order nonlinear optical (NLO) behaviours of 1 and 2 in DMF were investigated by using femtosecond degenerate four-wave mixing technique. Compound 1 exhibited relatively strong NLO responses while compound 2 showed nothing. Such a remarkable difference in the NLO property may be due to the fact that iodide is a better electron donor than bromide, which allows more efficient spin-orbital coupling, and facilitates intersystem crossing and more efficient usage of triplet excited state absorption.

参考文献

[1] (a) Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162;

(b) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001;

(c) Wang, C.; Zhang, T.; Lin, W. B. Chem. Rev. 2012, 112, 1084;

(d) Cohen, S. M. Chem. Rev. 2012, 112, 970.

[2] (a) Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. Chem. Soc. Rev. 2008, 37, 84;

(b) Goto, Y.; Sato, H.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2008, 130, 14354;

(c) Zhang, X. M. Coord. Chem. Rev. 2005, 249, 1201;

(d) Wang, X. Y.; Wang, Z. M.; Gao, S. Chem. Commun. 2007, 1127.

[3] (a) Papaefstathiou, G. S.; Zhong, Z. M.; Geng, L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158;

(b) Chu, Q. L.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2005, 44, 3569;

(c) Han, Y. F.; Lin, Y. J.; Jia, W. G.; Wang, G. L.; Jin, G. X. Chem. Commun. 2008, 1807;

(d) Georgiev, I. G.; MacGillivray, L. R. Chem. Soc. Rev. 2007, 36, 1239;

(e) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781;

(f) Mir, M. H.; Koh, L. L.; Tan, G. K.; Vittal, J. J. Angew. Chem., Int. Ed. 2010, 49, 390;

(g) Liu, D.; Ren, Z. G.; Li, H. X.; Lang, J. P.; Li, N. Y.; Abrahams, B. F. Angew. Chem., Int. Ed. 2010, 49, 4767;

(h) Liu, D.; Lang, J. P.; Abrahams, B. F. Chem. Commun. 2013, 49, 2682.

[4] (a) Zhu, H. B.; Gou, S. H. Coord. Chem. Rev. 2011, 255, 318;

(b) Horikoshi, R.; Mochida, T. Coord. Chem. Rev. 2006, 250, 2595;

(c) Zhu, Q.; Sheng, T.; Tan, C.; Hu, S.; Fu, R.; Wu, X. Inorg. Chem. 2011, 50, 7618;

(d) Carballo, R.; Covelo, B.; Fernández-Hermida, N.; Lago, A. B.; Vázquez-López, E. M. CrystEngComm 2009, 11, 817;

(e) Houng, S. Y.; Jung, H. Y.; Jae, I. K.; Eui, K. K.; Chang, S. H. Eur. J. Inorg. Chem. 2008, 3123;

(f) Li, H. X.; Wu, H. Z.; Zhang, W. H.; Ren, Z. G.; Zhang, Y.; Lang, J. P. Chem. Commun. 2007, 5052.

[5] (a) Han, L.; Bu, X.; Zhang, Q.; Feng, P. Inorg. Chem. 2006, 45, 5736;

(b) Wang, J.; Zhang, Y. H.; Li, H. X.; Lin, Z. J.; Tong, M. L. Cryst. Growth Des. 2007, 7, 2352;

(c) Wang, J.; Zheng, S. L.; Hu, S.; Zhang, Y. H.; Tong, M. L. Inorg. Chem. 2007, 46, 795;

(d) Ma, L. F.; Wang, Y. Y.; Wang, L. Y.; Lu, D. H.; Batten, S. R.; Wang, J. G. Cryst. Growth Des. 2009, 9, 2036;

(e) Ma, L. F.; Wang, L. Y.; Du, M. CrystEngComm 2009, 11, 2593.

[6] Chen, Y.; Wang, Z. O.; Ren, Z. G.; Li, H. X.; Li, D. X.; Liu, D.; Zhang, Y.; Lang, J. P. Cryst. Growth Des. 2009, 9, 4963.

[7] (a) Lang, J. P.; Xu, Q. F.; Zhang, W. H.; Li, H. X.; Ren, Z. G.; Chen, J. X.; Zhang, Y. Inorg. Chem. 2006, 45, 10487;

(b) Tang, X. Y.; Li, H. X.; Chen, J. X.; Ren, Z. G.; Lang, J. P. Coord. Chem. Rev. 2008, 252, 2026.

[8] Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley, New York, 1986.

[9] Chen, J. X.; Zhang, W. H.; Tang, X. Y.; Ren, Z. G.; Zhang, Y.; Lang, J. P. Inorg. Chem. 2006, 45, 2568.

[10] Lü, X. Q.; Pan, M.; He, J. R.; Cai, Y. P.; Kang, B. S.; Su, C. Y. CrystEngComm 2006, 8, 827.

[11] Svensson, P. H.; Kloo, L. Inorg. Chem. 1999, 38, 3390.

[12] Dean, P. A. W.; Vittal, J. J.; Wu, Y. Inorg. Chem. 1994, 33, 2180.

[13] Wang, X. F.; Lv, Y.; Okamura, T. A.; Kawaguchi, H.; Wu, G.; Sun, W. Y.; Ueyama, N. Cryst. Growth Des. 2007, 7, 1125.

[14] Mbogo, S. A.; Lobana, T. S.; McWhinnie, W. R.; Greaves, M. R.; Hamor, T. A. J. Organomet. Chem. 1990, 395, 167.

[15] (a) Yang, Y.; Samoc, M.; Prasad, P. N. J. Chem. Phys. 1991, 94, 5282;

(b) Orezyk, M. E.; Samoc, M.; Swiatkiewicz, J.; Prasad, P. N. J. Chem. Phys. 1993, 98, 2524;

(c) Jenekhe, S. A.; Lo, S. K.; Flom, S. R. Appl. Phys. Lett. 1989, 54, 2524;

(d) Mandal, B. K.; Bihari, B.; Sinha, A. K.; Kamath, M.; Chen, L. Appl. Phys. Lett. 1995, 66, 932.

[16] (a) Swiatkiewicz, J.; Prasad, P. N.; Reinhardt, B. A. Opt. Commun. 1998, 157, 135;

(b) Kim, O. K.; Lee, K. S.; Woo, H. Y.; Kim, K. S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 284.

[17] (a) Lü, X.; Chen, X.; Ren. Z. G.; Lang, J. P.; Liu, D.; Sun, Z. R. Dalton Trans. 2011, 40, 7983;

(b) Ren, Z. G.; Sun, S.; Dai, M.; Wang, H. F.; Lü, C. N.; Lang, J. P.; Sun, Z. R. Dalton Trans. 2011, 40, 8391;

(c) Zhang, W. H.; Chen, J. X.; Li, H. X.; Wu, B.; Tang, X. Y.; Ren, Z. G.; Zhang, Y.; Lang, J. P.; Sun, Z. R. J. Organomet. Chem. 2005, 690, 394.

[18] Zhai, T.; Lawson, C. M.; Gale, D. C.; Gray, G. M. Opt. Mater. 1995, 4, 455.

[19] (a) Shi, S.; Lin, Z.; Mo, Y.; Xin, X. Q. J. Phys. Chem. 1996, 100, 10696;

(b) Shi, S.; Ji, W.; Tang, S. H.; Lang, J. P.; Xin, X. Q. J. Am. Chem. Soc. 1994, 116, 3615;

(c) Zhang, C.; Song, Y. L.; Wang, X. Coord. Chem. Rev. 2007, 251, 1111;

(d) Shi, S. In Optoelectronic Properties of Inorganic Compounds, Eds.: Roundhill, D. M.; Fackler, J. P. Jr., Plenum Press, New York, 1998, pp. 55~105;

(e) Zhang, Q. F.; Xiong, Y. N.; Lai, T. S.; Ji, W.; Xin, X. Q. J. Phys. Chem. B 2000, 104, 3446.

[20] Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

文章导航

/