综述

氧还原反应中的银基催化剂

  • 张栋 ,
  • 张存中 ,
  • 穆道斌 ,
  • 吴伯荣 ,
  • 吴锋
展开
  • a 北京理工大学化工与环境学院 北京 100081;
    b 国家高技术绿色材料发展中心 北京 100081

收稿日期: 2013-03-14

  网络出版日期: 2013-05-16

基金资助

项目受动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013)、厦门大学固体表面物理化学国家重点实验室开放基金(2010-18)、国家重点基础研究发展计划(973)项目(No. 2009CB220100)资助.

A Review of Ag-based Catalysts for Oxygen Reduction Reaction

  • Zhang Dong ,
  • Zhang Cunzhong ,
  • Mu Daobin ,
  • Wu Borong ,
  • Wu Feng
Expand
  • a School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081;
    b National Development Center of High Technology Green Materials, Beijing 100081

Received date: 2013-03-14

  Online published: 2013-05-16

Supported by

Project supported by Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials (2013), Open Foundation of State Key Laboratory for Physical Chemistry of Solid Surfaces (2010-18) and the National Basic Research Program of China (2009CB220100).

摘要

本工作较为全面地归纳了氧还原反应中使用的各种银基催化剂: 纯银、碳载银、银复合催化剂、银合金和银-过渡金属氧化物; 分别论述了它们的主要发展动态、优缺点和可能的研究方向、催化机理, 并对国内外主要的研究成果进行了对比分析. 鉴于银合金、银复合催化剂的催化机理研究较为深入, 还着重论述了它们的研究发展状况, 同时对比了不同学者提出的催化机理、催化剂构效关系. 此外, 简要阐述了银基催化剂的合成路线: 化学还原法、电沉积法和高温煅烧等, 并介绍了各合成路线对催化剂的形貌、成分、催化活性产生的影响. 最后, 对银基催化剂的研究现状进行了小结并指出其今后可能的应用领域, 展示出良好的应用前景.

本文引用格式

张栋 , 张存中 , 穆道斌 , 吴伯荣 , 吴锋 . 氧还原反应中的银基催化剂[J]. 化学学报, 2013 , 71(08) : 1101 -1110 . DOI: 10.6023/A13030276

Abstract

There is great interest in the oxygen reduction reaction (ORR) in basic solution due to the development of alkaline fuel cell and metal air battery. Pt is a kind of highly active catalyst for ORR to go through 4e pathway. However, the price of Pt is expensive, and the annual production is only 181.6 tons, which is far to meet the usage of electric vehicles. On the contrary, Ag is not only much cheaper than Pt, but can also catalyze ORR to pass 4e procedure. In addition, Ag is more active than Pt for 4e process in more concentrated alkaline solution and at higher temperature. Therefore, this paper briefly reviews different types of Ag-based catalysts, which are used in the field of the ORR, such as, pure Ag, carbon-supported Ag, Ag composite catalysts, Ag binary alloys and Ag-transition metal oxides. We introduce merits and drawbacks, possible research directions of the above Ag-based catalysts, respectively, and show a comparative analysis on the update results of these Ag-based catalysts, especially for the carbon-supported Ag, a proper weight proportion of Ag and particle size and morphology of Ag cluster should be found out and researched in the future. Moreover, the state-of-the-art research and catalytic mechanism of Ag binary alloys are also reviewed, interestingly, two different catalytic mechanism explanations of Ag binary, based on the same institute, University of Texas at Austin, are compared and analyzed. Furthermore, the relationship between catalysis performance for ORR and structure of Ag-based catalysts are properly elaborated, and we also introduce some of the main characterization techniques (electrochemical techniques, structure analysis, morphological analysis, density functional theory etc.) Based on the common characteristics of all of Ag-based catalysts, at the end of this review, we propose some promising practical application and research tendency for Ag-based catalysts. The catalytic activity of transition metals in aprotic electrolytes is similar to that of transition metal in strong basic aqueous electrolytes, the excellent Ag based catalysts for alkaline fuel cell and metal air battery may play well in nonaqueous Li air battery, too.

参考文献

[1] Gasteiger, H. A.; Baker, D. R.; Carter, R. N. Hydrogen Fuel Cells: Fundamentals and Applications, Wiley-CPH, Chichester, 2010, p.35.

[2] Platinum 2011 Interim Review, http://www.platinum.matthey.com/media/816528/pt__03_to_12.pdf, accessed 22 April, 2013.

[3] Yang, H.; Alonso-Vante, N.; Léger, J.-M.; Lamy, C. J. Phys. Chem. B 2004, 108, 1938.

[4] Mukerjee, S.; Srinivasan, S. J. Electroanal. Chem. 1993, 357, 201.

[5] Xu, Y.; Ruban, A. V.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 4717.

[6] Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B 2005, 109, 22909.

[7] Li, W.; Fan, F.-R. F.; Bard, A. J. J. Solid State Electrochem. 2012, 16, 2563.

[8] Šepa, D.; Vojnovíc, M.; Damjanovic, A. Electrochim. Acta 1970, 15, 1355.

[9] Blizanac, B. B.; Ross, P. N.; Markovi?, N. M. J. Phys. Chem. B 2006, 110, 4735.

[10] Blizanac, B. B.; Ross, P. N.; Markovi?, N. M. Electrochim. Acta 2007, 52, 2264.

[11] Singh, P.; Buttry, D. A. J. Phys. Chem. C 2012, 116, 10656.

[12] Lu, Y. Z.; Chen, W. J. Power Sources 2012, 197, 107.

[13] Kinoshita, K. Electrochemical Oxygen Technology, John Wiley & Sons Inc., New York, 1992, p.37.

[14] Mao, L. Q.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Zhang, D.; Ohsaka, T. J. Electrochem. Soc. 2002, 149, A504.

[15] Xiao, W.; Wang, D. L.; Lou, X. W. J. Phys. Chem. C 2010, 114, 1694.

[16] Miura, N.; Horiuchi, H.; Shimizu, Y.; Yamazo, N. Chemical Soc. Japan 1987, 4, 617.

[17] Singh, R. N.; B. Lal, M. M. Electrochim. Acta 2004, 49, 4605.

[18] Tseung, A. C. C.; Bevan, H. L. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 429.

[19] Tseung, A. C. C.; Bevan, H. L. J. Power Sources 1990, 29, 413.

[20] Yeager, E. Mechanisms of Electrochemical Reactions on Non-Metallic Surfaces, Defense Technical Information Center, Cleveland, 1976, p.10.

[21] Wiggins-Camacho, J. D.; Stevenson, K. J. J. Phys. Chem. C 2011, 115, 20002.

[22] Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. J. Power Sources 2009, 187, 39.

[23] Neburchilov, V.; Wang, H. J.; Martin, J. J.; Qu, W. J. Power Sources 2010, 195, 1271.

[24] Hurlen, T.; Sandler, Y. L.; Pantier, E. A. Electrochim. Acta 1996, 11, 1463.

[25] Adanuvor, P. K.; White, R. E. J. Electrochem. Soc. 1988 135, 2509.

[26] Morcos, I. J. Electrochem. Soc. 1975, 122, 1008.

[27] Brandt, E. S. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 97.

[28] Chatenet, M.; Genies-Bultel, L.; Aurousseau, M.; Durand, R.; Andolfatto, F. J. Appl. Electrochem. 2002, 32, 1131.

[29] Okajima, K.; Nabekura, K.; Kondoh, T.; Sudoh, M. J. Electrochem. Soc. 2005, 152, D117.

[30] Zhang, C. Z.; Fan, F.-R. F.; Bard, A. J. J. Am. Chem. Soc. 2009, 131, 177.

[31] Jin, W.; Du, H.; Zheng, S. L.; Xu, H. B.; Zhang, Y. J. Phys. Chem. B 2010, 114, 6542.

[32] Becerra, J. G.; Salvarezza, R. C.; Arvia, A. J. Electrochim. Acta 1988, 33, 1431.

[33] Droog, J. M. M.; Alderliesten, P. T.; Bootsma, G. A. J. Electroanal. Chem. 1979, 99, 173.

[34] Chen, S. L.; Wu, B. L.; Cha, C. S. J. Electroanal. Chem. 1996, 416, 53.

[35] Burstein, G. T.; Newman, R. C. Electrochim. Acta 1980 25, 1009.

[36] Zerbino, J.; Teijelo, M. L.; Vilche, J. R.; Arvia, A. J. Electrochim. Acta 1985, 30, 1521.

[37] Ambrose, J.; Barradas, R. G. Electrochim. Acta 1974, 19, 781.

[38] Lima, F. H. B.; Castro, J. F. R. d.; Ticianelli, E. A. J. Power Sources 2006, 161, 806.

[39] Guo, J. S.; Hsu, A.; Chu, D.; Chen, R. R. J. Phys. Chem. C 2010, 114, 4324.

[40] Maheswari, S.; Sridhar, P.; Pitchumani, S. Electrocatal. 2012, 3, 13.

[41] Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. J. Am. Chem. Soc. 2012, 134, 9812.

[42] Demarconnay, L.; Coutanceau, C.; Léger, J.-M. Electrochim. Acta 2004, 49, 4513.

[43] Markovi?, N. M.; Ross., P. N. Surf. Sci. Rep. 2002, 45, 117.

[44] Adzic, R. R. Electrocatalysi, Wiley-VCH, New York, 1998, p.197.

[45] Fan, K. N.; Bao, X. H.; Deng, J. F. Acta Chim. Sinica 1990, 43, 330.(范康年, 包信和, 邓景发, 化学学报, 1990, 43, 330.)

[46] Sedona, F.; Marino, M. D.; Forrer, D.; Vittadini, A.; Casarin, M.; Cossaro, A.; Floreano, L.; Verdini, A.; Sambi, M. Nature Mater. 2012, 11, 970.

[47] Casarin, M.; Marino, M. D.; Forrer, D.; M. Sambi; Sedona, F.; Tondello, E.; Vittadini, A.; Barone, V.; Pavone, M. J. Phys. Chem. C 2010, 114, 2144.

[48] Zhao, W. A.; Gonzaga, F.; Li, Y. F.; Brook, M. A. Adv. Mater. 2007, 19, 1766.

[49] Lu, Y. Z.; Wang, Y. C.; Chen, W. J. Power Sources 2011, 196, 3033.

[50] Wagner, N.; Schulze, M.; Gülzow, E. J. Power Sources 2004, 127, 264.

[51] Spendelowa, J. S.; Wieckowski, A. Phys.Chem. Chem.Phys 2007, 9, 2654.

[52] Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. J. Phys. Chem. C 2007, 111, 404.

[53] Lima, F. H. B.; Sanches, C. D.; Ticianelli, E. A. J. Electrochem. Soc. 2005, 152, A1466.

[54] Coutanceau, C.; Demarconnay, L.; Lamy, C.; Leger, J.-M. J. Power Sources 2006, 156, 14.

[55] Varcoe, J. R.; Slade, R. C. T.; Wright, G. L.; Chen, Y. J. Phys. Chem. B 2006, 110, 21041.

[56] Park, J. S.; Park, S. H.; Yim, S. D.; Yoon, Y. G.; Lee, W. Y.; Kim, C. S. J. Power Sources 2008, 178, 620.

[57] Han, J.-J.; Li, N.; Zhang, T.-Y. J. Power Sources 2009, 193, 885.

[58] Garcia, A. C.; Gasparotto, L. H. S.; Gomes, J. F.; Tremiliosi-Filho, G. Electrocatal. 2012, 3, 147.

[59] Tammeveski, L.; Erikson, H.; Sarapuu, A.; Kozlova, J.; Ritslaid, P.; Sammelselg, V.; Tammeveski, K. Electrochem. Commun. 2012, 20, 15.

[60] Current Primary and Scrap Metal Price, http://www.metalprices.com. accessed 22 April, 2013.

[61] Meng, H.; Shen, P. K. Electrochem. Commun. 2006, 8, 588.

[62] Jiang, L. H.; Hsu, A.; Chu, D.; Chen, R. R. Electrochim. Acta 2010, 55, 4506.

[63] Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Mac, Y.; Yao, J. N. J. Mater. Chem. 2011, 21, 14917.

[64] Wang, N.; Cao, X.; Chen, Q. J.; Lin, G. Chem. Eur. J. 2012, 18, 6049.

[65] Wang, Y.; Liu, Y.; Lu, X. J.; Li, Z. P.; Zhang, H. N.; Cui, X. J.; Zhang, Y.; Shi, F.; Deng, Y. Q. Electrochem. Commun. 2012, 20, 171.

[66] Yi, Q. F.; Song, L. H. Electroanal. 2012, 24, 1655.

[67] Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. 2005, 117, 2170.

[68] Beer, S. Z.; Sandier, Y. L. J. Electrochem. Soc. 1965, 112, 1133.

[69] Raj, I. A.; Vasu, K. I. J. Appl. Electrochem. 1993, 23, 728.

[70] Lee, H. K.; Shim, J. P.; Shim, M. J.; Kim, S. W.; Lee, J. S. Mater. Chem. Phys. 1996, 45, 238.

[71] Kostowskyj, M. A.; Kirk, D. W.; Thorpe, S. J. Int. J. Hydrogen Energy 2010, 35, 5666.

[72] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. J. Phys. Chem. B 2004, 108, 17886.

[73] Shin, K.; Kim, D. H.; Yeo, S. C.; Lee, H. M. Catal. Today 2012, 185, 94.

[74] Lee, C.-L.; Chiou, H.-P.; Syu, C.-M.; Liu, C.-R.; Yang, C.-C.; Syu, C.-C. Int. J. Hydrogen Energy 2011, 36, 12706.

[75] Dhouib, A.; Guesmi, H. Chem. Phys. Lett. 2012, 521, 98.

[76] Fernández, J. L.; Walsh, D. A.; Bard, A. J. J. Am. Chem. Soc. 2005, 127, 357.

[77] Seo, A.; Lee, J.; Han, K.; Kim, H. Electrochim. Acta 2006, 52, 1603.

[78] Shukla, A. K.; Neergat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111.

[79] Wanjala, B. N.; Fang, B.; Loukrakpam, R.; Chen, Y.; Engelhard, M.; Luo, J.; Yin, J.; Yang, L.; Shan, S.; Zhong, C.-J. ACS Catal. 2012, 2, 795.

[80] Dathar, G. K. P.; Shelton, W. A.; Xu, Y. J. Phys. Chem. Lett. 2012, 3, 891.

[81] Roche, I.; Chainet, E.; Chatenet, M.; Vondrak, J. J. Phys. Chem. C 2007, 111, 1434.

[82] Hu, F. P.; Zhang, X. G.; Xiao, F.; Zhang, J. L. Carbon 2005, 43, 2931.

[83] Tang, Q. W.; Jiang, L. H.; Qi, J.; Jiang, Q.; Wang, S. L.; Sun, G. Q. Appl. Catal. B: Environ. 2011, 104, 337.

[84] Slanac, D. A.; Lie, A.; Paulson, J. A.; Stevenson, K. J.; Johnston, K. P. J. Phys. Chem. C 2012, 116, 11032.

[85] Wang, J.-H.; Liu, M. L.; Lin, M. C. Solid State Ionics 2006, 177, 939.

[86] Boskovic, I.; Mentus, S. V.; Pjescic, M. Electrochim. Acta 2006, 51, 2793.

[87] Lee, C. L.; Syu, C. C. Int. J. Hydrogen Energy 2011, 36, 15068.

文章导航

/