核壳型Alq3@SiO2的一锅法制备
收稿日期: 2013-03-18
网络出版日期: 2013-05-16
基金资助
项目受国家国际科技合作专项资助(No. 2012DFR50460)和国家自然科学基金(Nos. 21071108, 21101111, 61274056, 61205179)资助.
A Facile One Pot Synthesis of Alq3@SiO2
Received date: 2013-03-18
Online published: 2013-05-16
Supported by
Project supported by International Science & Technology Cooperation Program of China (No. 2012DFR50460) and the National Natural Scienti?c Foundation of China (Nos. 21071108, 21101111, 61274056, 61205179).
刘晓云 , 郭颂 , 武钰铃 , 苗艳勤 , 杜晓刚 , 周禾丰 , 王华 , 郭鹍鹏 . 核壳型Alq3@SiO2的一锅法制备[J]. 化学学报, 2013 , 71(07) : 1017 -1021 . DOI: 10.6023/A13030298
From the view point of practical application, one thorny problem in organic light emitting diode (OLED) devices is how to protect the inner materials from being eroded by oxygen and moisture, and to undertake sufficient long-term stability. Alq3 is the earliest and widely used organometallic material as an electron transport layer and light emitting layer in OLED, undoubtedly, improving its photochemical stability via coating it with materials that possess anti-oxygen and anti-water characters is one of cost-effective ways. Motivated by this, here, we demonstrate one pot synthesis of Alq3@SiO2 with uniform SiO2 covering. To obtain the optimized core-shell Alq3@SiO2 particle, a mixture of 8-hydroxyquinoline (6 mmol), 1 mL Et3N and 2 mL deionized water was dissolved in 120 mL ethanol and then heated to 70 ℃, a solution of Al2(SO4)3·18H2O (1 mmol) in 5 mL water and a solution of tetraethylorthosilicate (TEOS) (2 mmol) in 5 mL ethanol were added dropwise at the same time, respectively. The mixture was allowed to react at 70 ℃ for about 5 h. Then, a green precipitate was obtained, and purified by washing with water and ethanol. The scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to characterize the morphology of the as-synthesized Alq3@SiO2 particles, which exhibited better results than previous reported. From the measurement of UV-Vis and PL spectra we can see the Alq3@SiO2 we have produced exhibited similar absorption and emission profile compared to pristine Alq3, which is beneficial for future application in OLED because it is almost not change the optical property of Alq3. The prepared principle of Alq3@SiO2 can be assigned to the plausible Cage Effect of Et3N embraced Lewis acid Alq3, and a further Et3N catalytic hydrolysis of TEOS to produce SiO2 on the surface of formed Alq3. Note that Et3N used in this case is also acted as Alq3 morphology protective agent during TEOS hydrolysis. This work provides a facile and large scale preparation of Alq3@SiO2 for future improving the long-term stability of OLED devices.
Key words: one pot synthesis; Alq3@SiO2; Alq3; TEOS; Et3N
/
| 〈 |
|
〉 |