磷化铁/石墨烯纳米复合物的制备及其在F-T合成反应中的应用
收稿日期: 2013-06-04
网络出版日期: 2013-07-19
基金资助
项目受国家自然科学基金(Nos. 21176221, 21273224)和973项目基金(2011CB201402, 2013CB933100)资助.
Graphene-supported Iron Phosphide Nanoparticles for Fischer-Tropsch Synthesis
Received date: 2013-06-04
Online published: 2013-07-19
Supported by
Project supported by the Natural Science Foundation of China (Nos. 21176221, 21273224) and 973 Project (Nos. 2011CB201402, 2013CB933100).
作为一种新型碳材料, 石墨烯(G)具有较大的比表面, 因而可以作为载体担载多种金属或金属氧化物. 通过水热法一步合成了磷酸铁/氧化石墨复合物(FePO/GO), 氧化石墨(GO)上复合的磷酸铁(FePO)呈多孔状, 粒径为100~300 nm. 以FePO/GO为前体, 在氢气氛围下, 通过煅烧进一步合成了磷化铁/石墨烯纳米复合物(FeP/G). 粒径为10 nm左右的磷化铁(FeP)均匀的分散在石墨烯表面, 主要暴露(201)晶面. 石墨烯不但能调控FePO的结构, 而且还能促进FePO的还原. FeP/G催化剂可以用于费-托反应, 相对于非负载的FeP, FeP/G具有较高的催化活性、对长链烃较高的选择性以及较高的烯/烷比.
杨敬贺 , 赵博 , 赵华博 , 陆安慧 , 马丁 . 磷化铁/石墨烯纳米复合物的制备及其在F-T合成反应中的应用[J]. 化学学报, 2013 , 71(10) : 1365 -1368 . DOI: 10.6023/A13060591
Graphene (G) is a huge open π-electron system with a unique electronic structure, which ignites diverse applications such as electronics, photovoltaics, batteries, supercapacitors and so on. Because of the larger surface area, G can be used as the catalyst or the advantageous carrier for the catalytic active components for hydrogenation, oxidation and carbon-carbon coupling reactions. In the present study, we exploited G as a support for iron phosphide nanoparticles (FeP/G) by calcination the precursor iron phosphate-graphene oxide nanocomposite (FePO/GO) under hydrogen atmosphere. In the same method, we also prepared the control pure iron phosphide (FeP) by H2 calcination the precursor iron phosphate (FePO). The FePO of FePO/GO existed in the form of porous spherical and the particle size ranges from 100 nm to 300 nm. After transforming into FeP, the average particle size of FeP is about 10 nm while the particles were uniformly dispersed on the G and no obvious aggregation was observed. While, not only the pure FePO but also the pure FeP was powerful aggregation. That meant GO and G could regulate the microstructure and morphology of FePO and FeP, respectively. The as-prepared products were investigated by X-ray diffraction, transmission electron microscopy, field emission environment scanning electron microscopy and XPS spectroscopy. XPS spectra showed that the electron binding energy of Fe in FeP/G increased slightly. The Fischer-Tropsch Synthesis (FTS) reaction has been selected as model reaction for evaluating FeP/G. When the reaction conditions were 15 mg catalyst (reduced in H2 at 623 K for 2 h prior to FTS reaction), 2 MPa syngas (CO:H2:Ar=32:63:5), 5 mL·min-1, 593 K, the remarkable catalytic discrepancies in FTS activity and product selectivity were observed. The activity toward the conversion of CO on FeP/G was about 70 times that of FeP. The result show that FeP/G catalysts are potential good catalysts for FTS.
Key words: graphene; iron phosphate; iron phosphide; Fischer-Tropsch synthesis; graphene oxide
[1] Schulz, H. Appl. Catal. A: Gen. 1999, 186, 3.
[2] Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem Rev. 2007, 107, 1692.
[3] Davis, B. H. Catal. Today 2003, 84, 83.
[4] Gao, L.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Acta Chim. Sinica 2008, 66, 1851. (高恋, 徐耀, 侯博, 吴东, 孙予罕, 化学学报, 2008, 66, 1851.)
[5] Zhao, H.; Zhu, Q.; Gao, Y.; Zhai, P.; Ma, D. Appl. Catal. A: Gen. 2013, 456, 233.
[6] de Smit, E.; Weckhuysen, B. M. Chem. Soc. Rev. 2008, 37, 2758.
[7] Hummel, A. A.; Wilson, A. P.; Delgass, W. N. J. Catal. 1988, 113, 236.
[8] Song, X.; Ding, Y.; Chen, W.; Dong, W.; Pei, Y.; Zang J.; Yan, L.; Lu, Y. Chin. J. Catal. 2012, 33, 1938.
[9] Bukur, D. B.; Mukesh, D.; Patel, S. A. Ind. Eng. Chem. Res. 1990, 29, 194.
[10] Chen, W.; Fan, Z.; Pan, X.; Bao, X. J. Am. Chem. Soc. 2008, 130, 9414.
[11] Rao, C.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew. Chem., Int. Ed. 2009, 48, 7752.
[12] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.
[13] Yang, J. H.; Sun, G.; Gao, Y.; Zhao, H.; Tang, P.; Tan, J.; Lu, A. H.; Ma, D. Energy Environ. Sci. 2013, 6, 793.
[14] Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.
[15] Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.
[16] Dong, Y. P.; Mou, Z. G.; Du, Y. K.; Yang, P. Acta Chim. Sinica 2011, 69, 2379. (董玉培, 牟志刚, 杜玉扣, 杨平, 化学学报, 2011, 69, 2379.)
[17] Tang, L. P.; Song, C. L.; Yang, X. L.; Li, M. L.; Hu, B. Chin. J. Chem. 2013, 31, 826.
[18] Sun, T.; Li, J. Y.; Hao, A. Y. Chin. J. Org. Chem. 2012, 32, 2054. (孙涛, 李建业, 郝爱友, 有机化学, 2012, 32, 2054.)
[19] Zheng, L. Z.; Tao, K.; Xiong, L. Y.; Ye, D.; Han, K.; Ji, Y. Acta Chim. Sinica 2012, 70, 2342. (郑龙珍, 陶堃, 熊乐艳, 叶丹, 韩奎, 纪忆, 化学学报, 2012, 70, 2342.)
[20] Zhang, Q.; Wu, S. Y.; He, M. W.; Zhang, L.; Liu, Y.; Li, J. H.; Song, X. M. Acta Chim. Sinica 2012, 70, 2213. (张谦, 吴抒遥, 何茂伟, 张玲, 刘洋, 李景虹, 宋溪明, 化学学报, 2012, 70, 2213.)
[21] Xia, Q.; Luo, D.; Li, Z. J. Acta Chim. Sinica 2012, 70, 2079. (夏前芳, 罗丹, 李在均, 化学学报, 2012, 70, 2079.)
[22] Xia, Q.; Huang, Y.; Yang, X.; Li, Z. Acta Chim. Sinica 2012, 70, 1315. (夏前芳, 黄颖娟, 杨雪, 李在均, 化学学报, 2012, 70, 1315.)
[23] Zhang, Q.; Kang, J.; Wang, Y. ChemCatChem 2010, 2, 1030.
[24] Kang, J.; Deng, W.; Zhang, Q.; Wang, Y. J. Energy Chem. 2013, 22, 321.
/
〈 |
|
〉 |