研究论文

聚二甲基硅氧烷-聚苯乙烯复合微流控芯片室温不可逆封合法的研究

  • 胡贤巧 ,
  • 何巧红 ,
  • 白泽清 ,
  • 苏法铭 ,
  • 陈恒武
展开
  • 浙江大学化学系 微分析系统研究所 杭州 310058

收稿日期: 2013-06-28

  网络出版日期: 2013-08-12

基金资助

项目受国家重点基础研究发展计划(973, No. 2007CB714502)和国家自然科学基金(No. 20890020)资助.

An Approach for Irreversible Bonding of PDMS-PS Hybrid Microfluidic Chips at Room Temperature

  • Hu Xianqiao ,
  • He Qiaohong ,
  • Bai Zeqing ,
  • Su Faming ,
  • Chen Hengwu
Expand
  • Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Zijin'gang Campus, Hangzhou 310058

Received date: 2013-06-28

  Online published: 2013-08-12

Supported by

Project supported by the National Basic Research Program of China (973 Program, No. 2007CB714502) and the National Natural Science Foundation of China (No. 20890020).

摘要

研究了一种基于紫外光/臭氧(UV/O3)表面改性和硅烷化技术的聚二甲基硅氧烷(PDMS)与聚苯乙烯(PS)的不可逆封合的新方法. 首先, 用UV/O3处理PS使其表面产生羟基、羧基等极性基团; 然后用3-氨丙基三乙氧基硅烷(APTES)对UV/O3处理后的PS硅烷化, 使其表面形成氨丙基硅分子链; 再将硅烷化后的PS与拟封合的PDMS同时用UV/O3处理, 使两者表面均产生硅羟基. 最后将处理后的PDMS与PS贴合, 通过硅羟基之间的缩合实现两者的不可逆封合. 以接触角、XPS和ATR-FT-IR对封合过程进行表征. 封合的PDMS-PS复合芯片可承受大于0.5 MPa的压强. 采用该方法制备了PDMS-PS复合微流控芯片用于HeLa细胞的培养. 实验表明, HeLa细胞在PDMS-PS复合芯片通道内的生长状况大大优于在全PS芯片、略好于在全PDMS芯片内的生长状况.

本文引用格式

胡贤巧 , 何巧红 , 白泽清 , 苏法铭 , 陈恒武 . 聚二甲基硅氧烷-聚苯乙烯复合微流控芯片室温不可逆封合法的研究[J]. 化学学报, 2013 , 71(11) : 1535 -1539 . DOI: 10.6023/A13060678

Abstract

In some circumstances, hybrid polymer microfluidic chips composed of both elastic, gas-permeable polydimethylsiloxane (PDMS) and rigid plastics are needed. However, it is quite difficult to bond PDMS irreversibly to plastics such as polystyrene (PS). In this article, a facile method for irreversible bonding of PDMS to PS was proposed based on UV/O3-assisted surface modification in combination of surface silanization. Firstly, a PS sheet was exposed to UV/O3 to produce oxygen-containing polar moieties, such as hydroxyl and carboxylic acid, on its surface. Secondly, the UV/O3 treated PS sheet was silanized with (3-aminopropyl)triethoxysilane (APTES) via the reaction between the oxygen-containing polar moieties on the PS surface and the molecules of APTES. Thirdly, the silanized-PS sheet and the PDMS substrate with micro channel network were treated with UV/O3 again to generate silanol moieties on both surfaces. Finally, the UV/O3 treated PDMS was immediately brought intimate contact with the UV/O3 treated silanized-PS, and irreversible bonding of PDMS with PS occurred after putting the PDMS-PS complex at room temperature for 1 h through the condensation reaction between silanol moieties. Contact angle measurement, X-ray photoelectron spectroscopy, total reflection Fourier transformation infrared spectrometer were applied to characterize the surface chemistry of the PS during the UV/O3 treatment and silanization. The hybrid PDMS-PS microfludic chips prepared with the established method can bear a gas pressure higher than 0.5 MPa and a water stream at a flow rate higher than 170 μL/min (the test channels were 2.5 cm in the length, 50 μm in the width, 200 μm in the depth). A hybrid PDMS-PS microfluidic chip composed of gas-permeable PDMS substrate with channel network and excellently biocompatible PS cover sheet was fabricated for cell culture. The experimental results showed that HeLa cells cultured in the hybrid PDMS-PS microchip grew much better than those cultured in the full PS microchip, and slightly better than those in the full PDMS microchip.

参考文献

[1] Alrifaiy, A.; Lindahl, O. A.; Ramser, K. Polymers 2012, 4, 1349.
[2] Li, J. J.; Chen, Q.; Li, G.; Zhu, Z. Q.; Zhao, J. L. Acta Chim. Sinica 2009, 67, 1503. (李俊君, 陈强, 李刚, 朱自强, 赵建龙, 化学学报, 2009, 67, 1503.)
[3] Kim, L.; Toh, Y. C.; Voldman, J.; Yu, H. Lab Chip 2007, 7, 681.
[4] Vlachopoulou, M. E.; Tserepi, A.; Pavli, P.; Argitis, P.; Sanopoulou, M.; Misiakos, K. J. Micromech. Microeng. 2009, 19, 015007.
[5] Tang, L.; Lee, N. Y. Lab Chip 2010, 10, 1274.
[6] Bai, Z. Q.; He, Q. H.; Huang, S. S.; Hu, X. Q.; Chen, H. W. Anal. Chim. Acta 2013, 767, 97.
[7] Hu, X. Q.; Jiang, Y.; He, Q. H.; Shi, Y. M.; Hu, C. C.; Tang, N.; Chen, H. W. Acta Chim. Sinica 2012, 70, 2144. (胡贤巧, 蒋艳, 何巧红, 施秧梦, 胡辰辰, 汤凝, 陈恒武, 化学学报, 2012, 70, 2144.)
[8] Xu, B. Y.; Yan, X. N.; Xu, J. J.; Chen, H. Y. Biomicrofluidics 2012, 6, 016507.
[9] Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal. Chem. 1998, 70, 4974.
[10] Zhang, W. H.; Lin, S. C.; Wang, C. M.; Hu, J.; Li, C.; Zhuang, Z. X.; Zhou, Y. L.; Mathies, R. A.; Yang, C. Y. J. Lab Chip 2009, 9, 3088.
[11] McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H. K.; Schueller, O. J. A.; Whitesides, G. M. Electrophoresis 2000, 21, 27.
[12] Meng, F.; Chen, H. W.; Fang, Q.; Zhu, H. L.; Fang, Z. L. Chem. J. Chin. Univ. 2002, 23, 1264. (孟斐, 陈恒武, 方群, 朱海霖, 方肇伦, 高等学校化学学报, 2002, 23, 1264.)
[13] Hu, X. Q.; He, Q. H.; Lu, H.; Chen, H. W. J. Electroanal. Chem. 2010, 638, 21.
[14] Dulcey, C. S.; Georger, J. H.; Krauthamer, V.; Stenger, D. A.; Fare, T. L.; Calvert, J. M. Science 1991, 252, 551.
[15] Ye, T.; McArthur, E. A.; Borguet, E. J. Phys. Chem. B 2005, 109, 9927.
[16] Ma, D.; Chen, H. W.; Li, Z. M.; He, Q. H. Biomicrofluidics 2010, 4, 044107.
[17] Ziolkowska, K.; Kwapiszewski, R.; Brzozka, Z. New J. Chem. 2011, 35, 979.
文章导航

/