研究论文

水合肼在高岭石层间插层行为的量子化学研究

  • 张超 ,
  • 王幸 ,
  • 宋西亮 ,
  • 宋开慧 ,
  • 钱萍 ,
  • 尹洪宗
展开
  • a 山东农业大学化学与材料科学学院 泰安 271018;
    b 山东省临沂市益民实验中学 临沂 276025

收稿日期: 2013-06-17

  网络出版日期: 2013-07-24

基金资助

项目受国家自然科学基金(No. 20903063)和山东农业大学博士后基金(No. 76335)资助.

Quantum Chemical Study of Intercalation of Hydrazine Hydrate in Kaolinite

  • Zhang Chao ,
  • Wang Xing ,
  • Song Xiliang ,
  • Song Kaihui ,
  • Qian Ping ,
  • Yin Hongzong
Expand
  • a Chemistry and Material Science Faculty, Shandong Agricultural University, Tai'an 271018, Shandong Province, China;
    b Linyi Yimin Experimental Middle School, Linyi 276025, Shandong Province, China

Received date: 2013-06-17

  Online published: 2013-07-24

Supported by

Project supported by the National Natural Science Foundation of China (No. 20903063) and the Postdoctoral Foundation of Shandong Agricultural University in China (No. 76335).

摘要

水合肼以其碱性及吸附性受到越来越多的关注, 同时它在粘土中的污染问题也越来越受到重视. 本工作构建了高岭石团簇模型为Al6Si6O42H42并在B3LYP/6-31G(d,p), MP2/6-31G(d,p)//B3LYP/6-31G(d,p)和MP2/6-31++G(d,p)// B3LYP/6-31G(d,p)水平下对一水合肼以及二水合肼在高岭石层间的插层性质(如: 优化构型、结构参数、结合能、电荷分布、振动光谱、静电势等)进行探究. 计算表明, 当一水合肼进入层间后, 水分子和肼分子之间的相互作用发生了改变. 即水与肼分子分别以氢键的形式插层于高岭石层间, 且肼与高岭石之间的相互作用要强于肼与水之间的相互作用, 同时插层位点多位于高岭石四面体层和八面体层的重叠区域内, 这些都是水合肼易进入高岭石层间而难以脱去的重要因素. 当二水合肼进入层间后, 随着层间距的不断扩大, 肼分子与高岭石铝氧层之间的相互作用仍强于肼分子与水分子间的作用. 但当层间距超过1.05 nm时, 水分子与肼分子之间的作用则强于肼分子与高岭石的作用, 这也印证了若要将肼脱附, 需将层间距增大以减弱肼分子与高岭石的作用, 再用溶剂将其脱附的可行性.

关键词: 水合肼; 高岭石; 插层; 氢键

本文引用格式

张超 , 王幸 , 宋西亮 , 宋开慧 , 钱萍 , 尹洪宗 . 水合肼在高岭石层间插层行为的量子化学研究[J]. 化学学报, 2013 , 71(11) : 1553 -1562 . DOI: 10.6023/A13060634

Abstract

Hydrazine hydrate is now drawn more attention with its alkalinity, adsorption and pollution in clay. In this paper, the cluster model of kaolinite Al6Si6O42H42 was constructed, and the B3LYP/6-31G(d,p), MP2/6-31G(d,p)//B3LYP/ 6-31G(d,p) and MP2/6-31++G(d,p)//B3LYP/6-31G(d,p) levels were used to explore the intercalation properties (such as optimal structures, structural parameters, binding energies, charge distributions, vibration spectrum, electrostatic potential, and so on) of hydrazine monohydrate and hydrazine dihydrate in kaolinite. During the optimization, geometries of hydrazine and water molecules and only the innermost part representative of the interaction sites of kaolinite cluster model, including the oxygen atoms on the tetrahedral layer and the hydroxyls on the octahedral layer, have been fully optimized, and the "dangling" valences of the border oxygen atoms were saturated with hydrogen atoms. Results show that the interaction between hydrazine and water molecules after intercalation is different from that before intercalation, when hydrazine monohydrate is intercalated into kaolinite. That is to say, water and hydrazine interact respectively with kaolinite by forming hydrogen bonds, and the interaction between hydrazine molecule and kaolinite is stronger than that between hydrazine and water molecules, and the intercalation points are almost in the active parts of kaolinite. These are the important factors that hydrazine hydrate is easily into the kaolinite layers and difficult to take off. When hydrazine dihydrate is intercalated into kaolinite, the cluster model with different layer spacing was optimized. And the interaction between hydrazine molecule and kaolinite is stronger than that between hydrazine and water molecules with the increase of the layer spacing. When the layer spacing is greater than 1.05 nm, the interaction between hydrazine and water molecules is stronger than that between hydrazine and kaolinite, which also further confirms the feasibility of hydrazine desorption. Specifically, the layer spacing could be increased to weaken the interaction of hydrazine and kaolinite, then the solvent is used to achieve hydrazine desorption.

参考文献

[1] Zhang, J.; Li, D. Chemical Intermediates 2006, (3), 8. (张杰, 李丹, 化工中间体, 2006, (3), 8).
[2] Poso, A.; von Wright, A.; Gynther, J. Mutation Research- Fundamental and Molecular Mechanisms of Mutagenesis 1995, 332, 63.
[3] Pan, X. B.; Li, Y. F.; Liu, G.; Men, X. H. Chemistry 2004, 67, 630. (潘晓兵, 李彦锋, 刘刚, 门学虎, 化学通报, 2004, 67, 630.)
[4] Ge, Q.; Zhao, M.; Guo, F.; Niu, D. L.; Wu, F. H. Agrochemicals 2009, 48, 157. (葛青, 赵敏, 郭飞, 牛德良, 吴范宏, 农药, 2009, 48, 157.)
[5] Zhang, X.; Fan, D.; Xu, Z. J. Tongji Univ. 2005, 33, 1646.
[6] Franco, F.; Cecila, J.; Pérez-Maqueda, L.; Pérez-Rodríguez, J.; Gomes, C. Appl. Clay Sci. 2007, 35, 119.
[7] Yan, L.; Kong, H.; Li, Z. J. Acta Chim. Sinica 2013, 71, 822. (严琳, 孔惠, 李在均, 化学学报, 2013, 71, 822.)
[8] Fan, H. B.; Yang, R. J.; Li, D. H. Acta Chim. Sinica 2012, 70, 429. (范海波, 杨荣杰, 李定华, 化学学报, 2012, 70, 429.)
[9] Chen, Z. X.; Yan, W.; Wang, J.; Ji, C. Y. J. Building Materials 2000, 3(3), 240. (陈祖熊, 颜卫, 王坚, 季春勇, 建筑材料学报, 2000, 3(3), 240.)
[10] Tao, J. J. Zhongguo Lvjian 2007, 11, 30. (陶建军, 中国氯碱, 2007, 11, 30.)
[11] Zhu, P.; Shen, M.; Xiao, S.; Zhang, D. Physica B: Condensed Matter 2011, 406, 498.
[12] Horvath, E.; Kristof, J.; Frost, R. L.; Redey, A.; Vágvölgyi, V.; Cseh, T. J. Therm. Anal. Calorim. 2003, 71, 707.
[13] Gao, X.; Jang, J.; Nagase, S. J. Phys. Chem. C 2009, 114, 832.
[14] Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19, 2577.
[15] Park, S.; An, J.; Potts, J. R.; Velamakanni, A.; Murali, S.; Ruoff, R. S. Carbon 2011, 49, 3019.
[16] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Nature 2006, 442, 282.
[17] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano 2008, 2, 463.
[18] Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z.; Sheehan, P.; Houston, B. H. Nano Lett. 2008, 8, 3441.
[19] Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Nano Lett. 2009, 9, 1949.
[20] Ren, P. G.; Yan, D. X.; Ji, X.; Chen, T.; Li, Z. M. Nanotechnology 2011, 22, 055705.
[21] Costanzo, P.; Giese, R. Clays Clay Miner. 1990, 38, 160.
[22] Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. Langmuir 2002, 18, 139.
[23] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.01, Gaussian Inc., Pittsburgh, PA, 2003.
[24] Flükiger, P.; Lüthi, H.; Portmann, S.; Weber, J. Molekel 4.0, Swiss Center for Scientific Computing, Manno, Switzerland, 2000.
[25] Zhang, C.; Song, K. H.; Wang, X.; Yin, H. Z.; Qian, P. J. Mol. Sci. 2013, (2), 134. (张超, 宋开慧, 王幸, 尹洪宗, 钱萍, 分子科学学 报, 2013, (2), 134.)
[26] Hu, X. L.; Michaelides, A. Surf. Sci. 2008, 602, 960.
[27] Neder, R. B.; Burghammer, M.; Grasl, T.; Schulz, H.; Bram, A.; Fiedler, S. Clays Clay Miner. 1999, 47, 487.
[28] Bish, D. L. Clays Clay Miner. 1993, 41, 738.
[29] Zhao, S. P.; Wang, T.; Xu, H.; Guo, Y. Non-Metallic Mines 2009, (4), 37. (赵顺平, 王涛, 许衡, 郭玉, 非金属矿, 2009, (4), 37.)
[30] Anakli, D.; Çetinkaya, S. Curr. Appl. Phys. 2010, 10, 401.
[31] Gardolinski, J.; Lagaly, G. Clay Miner. 2005, 40, 537.
[32] Hayes, M.; Isaacson, P.; Chia, K.; Lees, A.; Yormah, T. Interactions of Hydrazine and of Hydrazine Derivatives with Soil Constituents and with Soils, DTIC Document, 1984.
[33] Ren, X. H. Agro-Environmental Protection 2001, 20, 31. (任向红, 农业环境保护, 2001, 20, 31.)
文章导航

/