综述

锂离子电池负极材料用Co3O4及其复合材料研究进展

  • 黄国勇 ,
  • 徐盛明 ,
  • 王俊莲 ,
  • 李林艳 ,
  • 王学军
展开
  • a 清华大学核能与新能源技术研究院 北京 100084;
    b 清华大学精细陶瓷北京市重点实验室 北京 100084

收稿日期: 2013-06-23

  网络出版日期: 2013-10-27

基金资助

项目受国家自然科学基金(No. 51274130)资助.

Recent Development of Co3O4 and Its Composites as Anode Materials of Lithium-ion Batteries

  • Huang Guoyong ,
  • Xu Shengming ,
  • Wang Junlian ,
  • Li Linyan ,
  • Wang Xuejun
Expand
  • a Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084;
    b Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing 100084

Received date: 2013-06-23

  Online published: 2013-10-27

Supported by

Project supported by the National Natural Science Foundation of China (No. 51274130).

摘要

锂离子电池的性能主要由正、负极材料决定,负极材料Co3O4具备理论容量高、振实密度大、化学性质稳定等特点倍受关注,但存在导电性不好、倍率性能较差等缺点. 解决该问题的手段:一方面可通过材料的纳米化与特殊形貌化如球状、纤维状、片状等,缩短锂离子嵌入和脱出行程;另一方面可通过材料的复合化,促进电子的快速传输和缓冲活性材料在充放电过程中的体积效应. 根据Co3O4颗粒的形貌特性对现有研究进行了分类与综述,阐述了改性手段的可能性机理,并对如何提高Co3O4的电化学性能提出了一些想法.

本文引用格式

黄国勇 , 徐盛明 , 王俊莲 , 李林艳 , 王学军 . 锂离子电池负极材料用Co3O4及其复合材料研究进展[J]. 化学学报, 2013 , 71(12) : 1589 -1597 . DOI: 10.6023/A13060656

Abstract

The depletion of non-renewable fossil fuels and environmental issues force us to explore substitutes for fossil fuels, such as solar energy, hydroelectricity, thermal enegy, wind power etc., which are the potential global energy sources in the future. However, most of the renewable energy are typically periodic or intermittent and need to equip with appropriate electrical energy storage devices, such as lithium-ion batteries (LIBs). Novel and advanced anode and cathode materials are the key technologies for high performance LIBs, so various electrode materials with high energy density have been extensively investigated. Cobaltosic oxide (Co3O4), commonly used as the anode materials for LIBs, has attracted extensive interest due to its high theoretical specific capacity (890 mAh·g-1), high tap density and stable chemical properties. However, its practical use is hindered because of the large volume change during repeated lithium uptake and removal reactions, low electronic conductivity, rapid capacity fading upon extended cycling and poor rate capability. To overcome these problems, it is an effective way to prepare nanometer-sized materials with nano-/micrometer-sized structures, which can buffer huge volume changes during the lithium insertion/extraction process and offer extra space for the lithium storage. Up to now, various morphologies of Co3O4 have been synthesized, such as nanoparticles, nanospheres, nanorods, nanowires, nanotubes, nanosheets, nanoplatelets, nanocubes, hierarchical nanoflowers and some other more complex structures. Another method is to composite with other materials such as carbon or graphene, which has large surface area, open porous structure, great flexibility, chemical stability, high electrical conductivity and the ability to facilitate electron transport within the active sites and effectively alleviate the strain from the volume expansion. In this paper, the recent advances of Co3O4 and its composites as anode materials of LIBs are reviewed. The researches are classified by the characteristics and morphologies of materials. Their advantages and disadvantages are summarized and the possible reaction mechanisms are explained. In addition, it is also discussed how to improve the electrochemical performance of Co3O4.

参考文献

[1] Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.
[2] Chen, J. J. Materials 2013, 6, 156.
[3] Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 535, 339.
[4] Xiong, Z. L.; Yun, Y. S.; Jin, H. J. Materials 2013, 6, 1138.
[5] Lee, Y. J.; Yi, H.; Kim, W. J.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Science 2009, 324, 1051.
[6] Cai, D. D.; Wang, S. Q.; Lian, P. C.; Zhu, X. F.; Li, D. D.; Yang, W. S.; Wang, H. H. Electrochim. Acta 2013, 90, 492.
[7] Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Nano Lett. 2013, 13, 470.
[8] Enrique, Q. G.; JÜrgen, C.; Helmut, F. Materials 2013, 6, 626.
[9] Xue, L. G.; Fu, Z. H.; Yao, Y.; Huang, T.; Yu, A. S. Electrochim. Acta 2010, 55, 7310.
[10] Lee, Y. J.; Lee, Y. J.; Oh, D.; Chen, T.; Ceder, G.; Belcher, A. M. Nano Lett. 2010, 10, 2433.
[11] Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395.
[12] Gu, Y.; Xu, Y.; Wang, Y. ACS Appl. Mater. Interfaces 2013, 5, 801
[13] Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Chem. Mater. 2010, 22, 4522.
[14] Zhang, X. N.; Pan, G. L.; Li, G. R.; Qu, J. Q.; Gao X. P. Solid State Ionics 2007, 178, 1107.
[15] Cui, Y. H.; Xue, M. Z.; Fu, Z. W.; Wang, X. L.; Liu, X. J. J. Alloys Compd. 2013, 555, 283.
[16] Kim, Y.; Hwang, H.; Yoon, C. S.; Kim, M. G.; Cho, J. Adv. Mater. 2007, 19, 92.
[17] Yan, H.; Zhu, Z.; Zhang, D.; Li, W.; Lu, Q. J. Power Sources 2012, 219, 45.
[18] Sun, S. J.; Wen, Z. Y.; Jin, J.; Cui, Y. M.; Lu, Y. Microporous Mesoporous Mater. 2013, 169, 242.
[19] Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Nano Lett. 2012, 12, 3005.
[20] Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang, P.; Chen, Q. W. Sci. Rep. 2012, 2, 1.
[21] Bai, Z. C.; Fan, N.; Sun, C. H.; Ju, Z. C.; Guo, C. L.; Yang, J.; Qian, Y. T. Nanoscale 2013, 5, 2442.
[22] Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanoscale 2012, 4, 2526.
[23] Li, W. J.; Fu, Z. W. Appl. Surf. Sci. 2010, 256, 2447.
[24] Li, X. L.; Song, H. F.; Wang, H.; Zhang, Y. L.; Du, K.; Li, H. Y.; Huang, J. M. J. Appl. Electrochem. 2012, 42, 1065.
[25] Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.
[26] Shaju, K. M.; Jiao, F.; De'bart, A.; Bruce, G. P. Phys. Chem. Chem. Phys. 2007, 9, 1837.
[27] Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. J. Power Sources 2013, 235, 67.
[28] Zhang, M.; Jia, M. Q.; Jin, Y. H.; Shi, X. R. Appl. Surf. Sci. 2012, 263, 573.
[29] Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Nano Lett. 2013, 13, 818.
[30] Li, Y.; Zhu, C. L.; Lu, T.; Guo, Z. P.; Zhang, D.; Ma, J.; Zhu, S. M. Carbon 2013, 52, 565.
[31] Zhang, G. H.; Chen, Y. J.; Qu, B. H.; Hu, L. L.; Mei, L.; Lei, D. N.; Li, Q.; Chen, L. B.; Li, Q. H.; Wang, T. H. Electrochim. Acta 2012, 80, 140.
[32] Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Zhou, F. Electrochim. Acta 2010, 55, 8981.
[33] Zhong, K. F.; Zhang, B.; Luo, S. H.; Wen, W.; Li, H.; Huang, X. J.; Chen, L. Q. J. Power Sources 2011, 196, 6802.
[34] Wang, J. Z.; Du, N.; Wu, H.; Zhang, H.; Yu, J. X.; Yang, D. R. J. Power Sources 2013, 222, 32.
[35] Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D.; Tang, K. B.; Qian, Y. T. Nanoscale 2012, 4, 6850.
[36] Liu, D. Q.; Yang, Z. B.; Wang, P.; Li, F.; Wang, D. S.; He, D. Y. Nanoscale 2013, 5, 1917.
[37] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
[38] Sun, Y.; Feng, X. Y.; Chen, C. H. J. Power Sources 2011, 196, 784.
[39] Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Angew. Chem. 2013, 125, 1.
[40] Hong, S. H.; Bae, J. S.; Ahn, H. J. Met. Mater. Int. 2008, 14, 229.
[41] Zhao, W. W.; Liu, Y.; Li, H. L.; Zhang, X. G. Mater. Lett. 2008, 62, 772.
[42] Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem. Eur. J. 2009, 15, 6169.
[43] Lu, Y.; Wang, Y.; Zou, Y. Q.; Jiao, Z.; Zhao, B.; He, Y. Q.; Wu, M. H. Electrochem. Commun. 2010, 12, 101.
[44] Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. J. Phys. Chem. C 2012, 116, 7227.
[45] Dong, Q.; Kumada, N.; Yonesaki, Y.; Takei, T.; Kinomura, N. Mater. Res. Bull. 2011, 46, 1156.
[46] Tian, L.; Huang, K. L.; Liu, Y. N.; Liu, S. Q. J. Solid State Chem. 2011, 184, 2961.
[47] Li, Y. L.; Zhao, J. Z.; Dan, Y. Y.; Ma, D. C.; Zhao, Y.; Hou, S. N.; Lin, H. B.; Wang, Z. C. Chem. Eng. J. 2011, 166, 428.
[48] Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
[49] Shim, H. W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim D. W. ACS Nano 2011, 5, 443.
[50] Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Chem. Eur. J. 2010, 16, 5215.
[51] Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425.
[52] Li, Y. G.; Tan, B.; Wu, Y. Y. Nano Lett. 2008, 8, 256.
[53] Xue, X. Y.; Yuan, S.; Xing, L. L.; Chen, Z. H.; He, B.; Chen, Y. J. Chem. Commun. 2011, 47, 4718.
[54] Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.
[55] Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Huang, J. N.; Yan, W. J.; Liu, G. Mater. Lett. 2008, 62, 3410.
[56] Xu, R.; Wang, J. W.; Li, Q. Y.; Sun, G. Y.; Wang, E. B.; Li, S. H.; Gu, J. M.; Ju, M. L. J. Solid State Chem. 2009, 182, 3177.
[57] Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.; Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.; Griebel, J. J.; Ratcliff, E. L.; Nebesny, K. G.; Pyun, J. ACS Nano 2009, 3, 3143.
[58] Xu, M. W.; Wang, F.; Zhao, M. S.; Yang, S.; Song, X. P. Electrochim. Acta 2011, 56, 4876.
[59] Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2008, 182, 359.
[60] Rui, X. H.; Tan, H. T.; Sim, D. H.; Liu, W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. J. Power Sources 2013, 222, 97.
[61] Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Adv. Funct. Mater. 2012, 22, 861.
[62] Wang, L. M.; Liu, B.; Ran, S. H.; Huang, H. T.; Wang, X. F.; Liang, B.; Chen, D.; Shen, G. Z. J. Mater. Chem. 2012, 22, 23541.
[63] Wang, S. J.; Zhang, B. P.; Zhao, C. H.; Li, S. J.; Zhang, M. X.; Yan, L. P. Appl. Surf. Sci. 2011, 257, 3358.
[64] Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. J. Power Sources 2011, 196, 6987.
[65] Wang, X.; Guan, H.; Chen, S.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; Golberg, D. Chem. Commun. 2011, 47, 12280.
[66] Wang, Y. F.; Zhang, L. J. J. Power Sources 2012, 209, 20.
[67] Zhan, L.; Wang, Y. L.; Qiao, W. M.; Ling, L. C.; Yang, S. B. Electrochim. Acta 2012, 78, 440.
[68] Wang, B.; Wang, Y.; Park, J.; Ahn, H.; Wang, G. X. J. Alloys Compd. 2011, 509, 7778.
[69] Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. ChemSusChem 2010, 3, 236.
[70] Wang, G. L.; Liu, J. C.; Tang, S.; Li, H. Y.; Cao, D. X. J. Solid State Electrochem. 2011, 15, 2587.
[71] Li, B. Y.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Inorg. Chem. 2011, 50, 1628.
[72] Choi, B. G.; Chang, S. J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. Nanoscale 2012, 4, 5924.
[73] Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187.
[74] Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Luan, S. R.; Li, C. Z. ACS Appl. Mater. Interfaces 2013, 5, 997.
[75] Guo, H. J.; Li, X. H.; Xie, J.; Wang, Z. X.; Peng, W. J.; Sun, Q. M. Energy Convers. Manage. 2010, 51, 247.
[76] Park, J.; Moon, W. G.; Kim, G. P.; Nam, I.; Park, S.; Kim, Y.; Yi, J. Electrochim. Acta 2013, 105, 110.
[77] Abbas, S. M.; Hussain, S. T.; Ali, S.; Ahmad, N.; Ali, N.; Munawar, K. S. Electrochim. Acta 2013, 105, 481.
[78] Fang, Z. G.; Xu, W. W.; Huang, T.; Li, M. L.; Wang, W. R.; Liu, Y. P.; Mao, C. C.; Meng, F. L.; Wang, M. J.; Cheng, M. H.; Yu, A. S.; Guo, X. H. Mater. Res. Bull. 2013, 48, 4419.
[79] Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Adv. Mater. 2007, 19, 4505.
[80] Zhou, G. M.; Li, L.; Zhang, Q.; Li, N.; Li, F. Phys. Chem. Chem. Phys. 2013, 15, 5582.
[81] Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Nano Res. 2013, 6, 167.
[82] Hassan, M. F.; Guo, Z. P.; Du, G. D.; Wexler. D.; Liu, H. K. Phys. Status Solidi A 2009, 206, 2546. Sun, F.; Huang, K.; Liu, Y. P.; Gao, T.; Han, Y. N.; Zhong, J. X. Appl. Surf. Sci. 2013, 266, 300.
文章导航

/