综述

多金属氧酸盐催化的水氧化研究进展

  • 宋芳源 ,
  • 丁勇 ,
  • 赵崇超
展开
  • a 甘肃省有色金属化学与资源利用重点实验室 兰州大学化学化工学院 兰州 730000;
    b 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州 730000;
    c 埃默里大学化学系 亚特兰大 美国 30322

收稿日期: 2013-10-12

  网络出版日期: 2013-12-07

基金资助

项目受国家自然科学基金(No. 21173105)资助.

Progress in Polyoxometalates-Catalyzed Water Oxidation

  • Song Fangyuan ,
  • Ding Yong ,
  • Zhao Chongchao
Expand
  • a College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000;
    b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
    c Department of Chemistry, Emory University, Atlanta, GA, 30322, USA

Received date: 2013-10-12

  Online published: 2013-12-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21173105).

摘要

氢气以其清洁无污染、燃烧值高等优点成为未来最具潜力的可再生能源之一,而清洁生产氢气的最佳选择之一即为裂解水. 利用太阳能模拟光合作用实现水的全分解产生氢气和氧气是目前最为理想的能源转化方式,并且已经引起了众多研究者的关注. 水分解的半反应之一——水氧化反应由于其过程复杂,一直是制约水分解的瓶颈. 所以寻找高效、稳定的水氧化催化剂便成为了突破该瓶颈的关键. 多金属氧酸盐是一类以前过渡金属氧簇为基本单元形成的多金属氧簇化合物. 由于多金属氧酸盐在物理、化学性质方面具有无法比拟的特性,使得其在催化、药物、纳米科技和材料科学等方面已被广泛地应用. 多金属氧酸盐的全无机配体可很好地抵御水氧化反应的强氧化性环境,故将其作为水氧化催化剂越来越引起研究者们的注意,并且已有多种多金属氧酸盐被设计为水氧化催化剂. 本文详细介绍了各种不同过渡金属取代的多金属氧酸盐水氧化催化剂的研究进展.

本文引用格式

宋芳源 , 丁勇 , 赵崇超 . 多金属氧酸盐催化的水氧化研究进展[J]. 化学学报, 2014 , 72(2) : 133 -144 . DOI: 10.6023/A13101052

Abstract

H2 is considered to be a clean, efficiently and renewable energy because H2O is the only product when H2 combines with O2. The splitting of water into H2 and O2 by sunlight is viewed as one of the most promising ways to produce clean and sustainable energy that is expected to meet the future need as environmentally friendly and renewable energy sources. Artificial photosynthesis water splitting is currently the most ideal energy conversion mode, and it has attracted many researchers' interest. Through this way, H2 can be separated from reaction system or in-situ used when a solar cell designed together. Water oxidation is identified as the bottleneck of water splitting because it requires a multi-electron stepwise building up of very high redox potentials. So, development of efficient and stable water oxidation catalysts (WOCs) is the key step in overall water splitting. Polyoxometalates (POMs) are a versatile family of early transition-metal oxide nanoclusters. Owing to the unmatched physical and chemical properties of POMs, they have been widely applied in catalysis, medicine, nanotechnology and materials science. Development of POMs as WOCs has given rise to more and more interesting of researchers because the all-inorganic ligands of POMs can resist the strong oxidizing environment of water oxidation reaction, which is a shortcoming of many organometallic complex WOCs. POMs have the nature between metal oxides and molecular catalysts (the so-called molecular metal oxide), thus, this kind of WOC combines the stability benefit of heterogeneous WOCs and other molecular benefits of homogeneous WOCs, which give rise to the attention of researchers. Based on a considerable number of POMs have been designed as WOCs so far, it is necessary to carry on a review for previous POM-WOCs work. In this review, various different type transition metal substituted POMs as WOCs were described and commented in detail.

参考文献

[1] Du, P.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012.



[2] Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.



[3] Service, R. F. Science 2005, 309, 548.



[4] Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D.; Potter, S. D.; Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. Nature 1998, 395, 881.



[5] Fillol, J. L.; Codolà, Z.; Garcia-Bosch, I.; Gómez, L.; Pla, J. J.; Costas, M. Nat. Chem. 2011, 3, 807.



[6] Parent, A. R.; Crabtree, R. H.; Brudvig, G. W. Chem. Soc. Rev. 2013, 42, 2247.



[7] Liu, X.; Wang, F. Coord. Chem. Rev. 2012, 256, 1115.



[8] Sartorel, A.; Bonchio, M.; Campagna, S.; Scandola, F. Chem. Soc. Rev. 2013, 42, 2262.



[9] Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294.



[10] McAlpin, J. G.; Stich, T. A.; Casey, W. H.; Britt, R. D. Coord. Chem. Rev. 2012, 256, 2445.



[11] Lin, Y.; Yuan, G.; Sheehan, S.; Zhou, S.; Wang, D. Energy Environ. Sci. 2011, 4, 4862.



[12] Graetzel, M. Acc. Chem. Res. 1981, 14, 376.



[13] Sartorel, A.; Carraro, M.; Toma, F. M.; Prato, M.; Bonchio, M. Energy Environ. Sci. 2012, 5, 5592.



[14] Cao, R.; Lai, W.; Du, P. Energy Environ. Sci. 2012, 5, 8134.



[15] Fukuzumi, S.; Yamada, Y. J. Mater. Chem. 2012, 22, 24284.



[16] Liang, Y.; An, X. Acta Chim. Sinica 1986, 44, 964. (梁永武, 安兴民, 化学学报, 1986, 44, 964.)



[17] Ling, L.; Chen, G.; Wang, W.; Chen, H.; Li, S.; Chen, C.; Liu, Q.; Kuang, T. Acta Chim. Sinica 2007, 65, 983. (凌琳, 陈桂英, 王文国, 陈惠, 李淑芹, 陈昌能, 刘秋田, 匡廷云, 化学学报, 2007, 65, 983.)



[18] Wan, Z.; Chen, S.; Jia, C.; Yan, W. Acta Chim. Sinica 2009, 67, 403. (万中全, 陈树楠, 贾春阳, 延卫, 化学学报, 2009, 67, 403.)



[19] Wen, F.; Yang, J.; Zong, X.; Ma, Y.; Xu, Q.; Ma, B.; Li, C. Prog. Chem. 2009, 21, 2285. (温福宇, 杨金辉, 宗旭, 马艺, 徐倩, 马宝军, 李灿, 化学进展, 2009, 21, 2285.)



[20] Han, Z.; Bond, A. M.; Zhao, C. Sci. China Chem. 2011, 54, 1877.



[21] Huang, Z.; Geletii, Y. V.; Musaev, D. G.; Hill, C. L.; Lian, T. Ind. Eng. Chem. Res. 2012, 51, 11850.



[22] Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072.



[23] Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. Nat. Chem. 2012, 4, 418.



[24] Ma, S. S. K.; Maeda, K.; Abe, R.; Domen, K. Energy Environ. Sci. 2012, 5, 8390.



[25] Hoang, S.; Guo, S.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Nano Lett. 2012, 12, 26.



[26] Duan, L.; Xu, Y.; Zhang, P.; Wang, M.; Sun, L. Inorg. Chem. 2010, 49, 209.



[27] Wang, E.; Hu, C.; Xu, L. Introduction of Polyoxometalate Chemistry, Chemical Industry Press, Beijing, 1998. (王恩波, 胡长文, 许林, 多酸化学导论, 化学工业出版社, 北京, 1998.)



[28] Carraro, M.; Sartorel, A.; Toma, F. M.; Puntoriero, F.; Scandola, F.; Campagna, S.; Prato, M.; Bonchio, M. Top. Curr. Chem. 2011, 303, 121.



[29] Geletii, Y. V.; Yin, Q.; Hou, Y.; Huang, Z.; Ma, H.; Song, J.; Besson, C.; Luo, Z.; Cao, R.; O'Halloran, K. P.; Zhu, G.; Zhao, C.; Vickers, J. W.; Ding, Y.; Mohebbi, S.; Kuznetsov, A. E.; Musaev, D. G.; Lian, T.; Hill, C. L. Isr. J. Chem. 2011, 51, 238.



[30] Yamada, Y.; Yano, K.; Hong, D.; Fukuzumi, S. Phys. Chem. Chem. Phys. 2012, 14, 5753.



[31] Natali, M.; Orlandi, M.; Berardi, S.; Campagna, S.; Bonchio, M.; Sartorel, A.; Scandola, F. Inorg. Chem. 2012, 51, 7324.



[32] Li, B.; Li, F.; Bai, S.; Wang, Z.; Sun, L.; Yang, Q.; Li, C. Energy Environ. Sci. 2012, 5, 8229.



[33] Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. Science 2010, 328, 342.

文章导航

/