微波还原氧化石墨烯及其气体储存性能研究
收稿日期: 2014-02-12
网络出版日期: 2014-02-25
基金资助
项目受国家科技部(Nos. 2012CB933401,2011CB932602,2011DFB50300)及国家自然科学基金(Nos. 50933003,50902073,50903044)资助.
Investigation of Gas Storage Properties of Graphene Material Prepared by Microwave-assisted Reduction of Graphene Oxide
Received date: 2014-02-12
Online published: 2014-02-25
Supported by
Project supported by Ministry of Science and Technology of China (Nos. 2012CB933401, 2011CB932602, 2011DFB50300) and Natural Science Foundation of China (Nos. 50933003, 50902073, 50903044).
随东 , 黄毅 , 黄璐 , 张昳 , 陈永胜 . 微波还原氧化石墨烯及其气体储存性能研究[J]. 化学学报, 2014 , 72(3) : 382 -387 . DOI: 10.6023/A13080884
Porous graphene material, named as MWRGO, has been prepared by microwave-assisted reduction method. Extensive characterizations indicate that graphene oxide was effectively reduced and MWRGO has a porous and disordered stacking structure. It has a special surface area of 461.6 m2/g with pore size centered at 0.67 nm. H2 and CO2 adsorption properties of MWRGO were investigated, showing a H2 uptake of 0.52 wt% at 77 K and 1 atm and an absolute adsorption amount as high as 10.7 wt% at a higher pressure of 60 bar. The amount of CO2 adsorption at 273 K and 1 atm is 7.1 wt%.
Key words: graphene; carbon materials; gas storage; microwave reduction; porous materials
[1] Dillon, A. C.; Heben, M. J. Appl. Phys. A: Mater. Sci. Process. 2001, 72, 133.
[2] Johnson, J. Chem. Eng. News 2004, 82, 36.
[3] Meng, L.-Y.; Park, S.-J. J. Colloid Interface Sci. 2010, 352, 498.
[4] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
[5] Yong, Z.; Mata, V.; Rodrigues, A. E. Sep. Purif. Technol. 2002, 26, 195.
[6] Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44.
[7] Zhu, Y. L.; Long, H.; Zhang, W. Chem. Mater. 2013, 25, 1630.
[8] Forster, P. M.; Eckert, J.; Heiken, B. D.; Parise, J. B.; Yoon, J. W.; Jhung, S. H.; Chang, J.-S.; Cheetham, A. K. J. Am. Chem. Soc. 2006, 128, 16846.
[9] Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127.
[10] Zhou, L.; Liu, X. W.; Li, J. W.; Wang, N.; Wang, Z.; Zhou, Y. P. Chem. Phys. Lett. 2005, 413, 6.
[11] Yang, Z.; Xia, Y.; Mokaya, R. J. Am. Chem. Soc. 2007, 129, 1673.
[12] Fan, Y. Y.; Liao, B.; Liu, M.; Wei, Y. L.; Lu, M. Q.; Cheng, H. M. Carbon 1999, 37, 1649.
[13] Wang, H.; Gao, Q.; Hu, J. J. Am. Chem. Soc. 2009, 131, 7016.
[14] Lozano-Castello, D.; Lillo-Rodenas, M. A.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon 2001, 39, 741.
[15] Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. Chem. Soc. Rev. 2010, 39, 656.
[16] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[17] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906.
[18] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611.
[19] Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. J. Phys. Chem. C 2009, 113, 13103.
[20] Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. Energy Environ. Sci. 2013, 6, 1623.
[21] Zhang, L.; Zhang, F.; Yang, X.; Long, G.; Wu, Y.; Zhang, T.; Leng, K.; Huang, Y.; Ma, Y.; Yu, A.; Chen, Y. Sci. Reports 2013, 3, 1408.
[22] Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Small 2011, 7, 3186.
[23] Liang, J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y.; Fang, S.; Oh, J.; Kozlov, M.; Ma, Y.; Li, F.; Baughman, R.; Chen, Y. ACS Nano 2012, 6, 4508.
[24] Huang, L.; Yi, N.; Wu, Y.; Zhang, Y.; Zhang, Q.; Huang, Y.; Ma, Y.; Chen, Y. Adv. Mater. 2013, 25, 2224.
[25] Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10439.
[26] Park, N.; Hong, S.; Kim, G.; Jhi, S.-H. J. Am. Chem. Soc. 2007, 129, 8999.
[27] Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Nano Lett. 2008, 8, 3166.
[28] Tylianakis, E.; Psofogiannakis, G. M.; Froudakis, G. E. J. Phys. Chem. Lett. 2010, 1, 2459.
[29] Lu, R.; Rao, D.; Lu, Z.; Qian, J.; Li, F.; Wu, H.; Wang, Y.; Xiao, C.; Deng, K.; Kan, E.; Deng, W. J. Phys. Chem. C 2012, 116, 21291.
[30] Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R. Carbon 2010, 48, 630.
[31] Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 15704.
[32] Ma, L.-P.; Wu, Z.-S.; Li, J.; Wu, E.-D.; Ren, W.-C.; Cheng, H.-M. Int. J. Hydrogen Energy 2009, 34, 2329.
[33] Yang, S.; Zhan, L.; Xu, X.; Wang, Y.; Ling, L.; Feng, X. Adv. Mater. 2013, 25, 2130.
[34] Srinivas, G.; Burress, J.; Yildirim, T. Energy Environ. Sci. 2012, 5, 6453.
[35] Kumar, R.; Jayaramulu, K.; Maji, T. K.; Rao, C. N. R. Chem. Commun. 2013, 49, 4947.
[36] Burress, J. W.; Gadipelli, S.; Ford, J.; Simmons, J. M.; Zhou, W.; Yildirim, T. Angew. Chem.-Int. Ed. 2010, 49, 8902.
[37] de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164.
[38] Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. J. Am. Chem. Soc. 2003, 125, 8722.
[39] Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Carbon 2009, 47, 3371.
[40] Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J. L.; Delichatsios, M.; Ukleja, S. J. Phys. Chem. C 2010, 114, 19459.
[41] Zhu, Y.; Murali, S.; Stoller, M. D.; Velamakanni, A.; Piner, R. D.; Ruoff, R. S. Carbon 2010, 48, 2118.
[42] Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.
[43] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.
[44] Okamoto, Y.; Miyamoto, Y. J. Phys. Chem. B 2001, 105, 3470.
[45] Subrahmanyam, K. S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. J. Mater. Chem. 2008, 18, 1517.
[46] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
[47] Bourlinos, A. B.; Steriotis, T. A.; Karakassides, M.; Sanakis, Y.; Tzitzios, V.; Trapalis, C.; Kouvelos, E.; Stubos, A. Carbon 2007, 45, 852.
[48] Du, W. F.; Wilson, L.; Ripmeester, J.; Dutrisac, R.; Simard, B.; Denommee, S. Nano Lett. 2002, 2, 343.
[49] Rzepka, M.; Lamp, P.; de la Casa-Lillo, M. A. J. Phys. Chem. B 1998, 102, 10894.
[50] Rubes, M.; Bludsky, O. ChemPhysChem 2009, 10, 1868.
[51] Xu, W. C.; Takahashi, K.; Matsuo, Y.; Hattori, Y.; Kumagai, M.; Ishiyama, S.; Kaneko, K.; Iijima, S. Int. J. Hydrogen Energy 2007, 32, 2504.
[52] Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, 3197.
[53] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano 2008, 2, 463.
/
〈 |
|
〉 |