收稿日期: 2014-02-06
网络出版日期: 2014-03-20
基金资助
项目受南京航空航天大学基本科研业务费(No. NS2013096)资助.
Recent Progress of Graphene Doping
Received date: 2014-02-06
Online published: 2014-03-20
Supported by
Project supported by the NUAA Fundamental Research Funds (No. NS2013096).
张芸秋 , 梁勇明 , 周建新 . 石墨烯掺杂的研究进展[J]. 化学学报, 2014 , 72(3) : 367 -377 . DOI: 10.6023/A14020093
Doping is the most feasible and convenient method to modulate the band structure of graphene from semimetal to p-type or n-type material. In recent years, the chemical vapor deposition methods have been well developed to grow graphene layer with high quality and large area. This paper briefly reviews the recent research progress on doping methods of CVD graphene, including the doping effects by metals, small molecules, chemical reactions and replacement of lattice atoms. The methods of bilayer graphene band regulation as well as the fabrication of graphene p-n junction are also introduced, and the future tendency and potential applications of doped graphene are proposed. For graphene, it is relatively easy to produce p-type doping via surface absorption, exposing pristine graphene in those molecules with electron withdrawing groups (H2O, O2, N2, NO2, PMMA et al.) will lead to evident p-type doping, and graphene of this kind of p-type doping can rapidly recover to its original state when doping molecules are removed. If boron source was introduced into the CVD growth process of graphene, substitutional p-doping that some carbon atoms in graphene hexagonal lattice are replaced by boron atoms can be formed. Compared to the p-type doping, stable n-type doping is not facile for graphene. It has been proved that some electron-donating molecules such as ammonia, potassium, phosphorus, hydrogen and poly(ethyleneimine) (PEI) can produce n-type doping in graphene through surface electron transfer, but these doping effects are unstable. By introducing nitrogen-containing precursors in growth approach, small part of lattice carbon atoms will be replaced by nitrogen atoms which can result in effectively n-doping effect. Combine the p-type and n-type doping method together, the p-n junction can be produced in mono- or bi-layer graphene, a series of novel functional devices like photothermoelectric devices have been constructed using these hetero-doped graphene p-n junctions.
Key words: graphene; doping; semiconductor; bandgap
[1] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
[2] Zhou, L.; Zhang, L.-M. Acta Chim. Sinica 2014, 72, 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72, 289.)
[3] Lin, Y.-W.; Guo, X.-F. Acta Chim. Sinica 2014, 72, 277. (林源为, 郭雪峰, 化学学报, 2014, 72, 277.)
[4] Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K.; Watanabe, K.; Taniguchi, T.; Geim, A. K. Nano Lett. 2011, 11, 2396.
[5] Novoselov, K.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K. Nature 2012, 490, 192.
[6] Moser, J.; Verdaguer, A.; Jimenez, D.; Barreiro, A.; Bachtold, A. Appl. Phys. Lett. 2008, 92, 123507.
[7] Geim, A. K. Science 2009, 324, 1530.
[8] Guo, B.; Fang, L.; Zhang, B.; Gong, J. R. Insciences J. 2011, 1, 80.
[9] Liu, H.; Liu, Y.; Zhu, D. J. Mater. Chem. 2011, 21, 3335.
[10] Neto, A. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109.
[11] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[12] Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano Lett. 2008, 8, 4603.
[13] Wu, J.-X.; Xu, H.; Zhang, J. Acta Chim. Sinica 2014, 72, 301. (吴娟霞, 徐华, 张锦, 化学学报, 2014, 72, 301.)
[14] Hu, Y.-J.; Jin, J.; Zhang, H. Acta Phys.-Chim. Sin. 2010, 26, 2073. (胡耀娟, 金娟, 张卉, 物理化学学报, 2010, 26, 2073.)
[15] Ristein, J. Science 2006, 313, 1057.
[16] Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gulapalli, H.; Borca‐Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Small 2010, 6, 2535.
[17] Leenaerts, O.; Partoens, B.; Peeters, F. Phys. Rev. B 2009, 79, 235440.
[18] Docherty, C. J.; Lin, C.-T.; Joyce, H. J.; Nicholas, R. J.; Herz, L. M.; Li, L.-J.; Johnston, M. B. Nat. Commun. 2012, 3, 1228.
[19] Giovannetti, G.; Khomyakov, P.; Brocks, G.; Karpan, V.; Van den Brink, J.; Kelly, P. Phy. Rev. Lett. 2008, 101, 026803.
[20] Lee, W. H.; Suk, J. W.; Lee, J.; Hao, Y.; Park, J.; Yang, J. W.; Ha, H.-W.; Murali, S.; Chou, H.; Akinwande, D.; Kim, K. S.; Ruoff, R. S. ACS Nano 2012, 6, 1284.
[21] Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S. ACS Nano 2010, 4, 6055.
[22] Crowther, A. C.; Ghassaei, A.; Jung, N.; Brus, L. E. ACS Nano 2012, 6, 1865.
[23] Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. Science 2009, 324, 768.
[24] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. Nat. Nanotechnol. 2010, 5, 574.
[25] Li, X.; Fan, L.-L.; Li, Z.; Wang, K.-L.; Zhong, M.-L.; Wei, J.-Q.; Wu, D.-H.; Zhu, H.-W. Adv. Eng. Mater. 2012, 2, 425.
[26] Wang, H.; Zhou, Y.; Wu, D.; Liao, L.; Zhao, S.-L.; Peng, H.-L.; Liu, Z.-F. Small 2013, 9, 1316.
[27] Wu, J.; Xie, L.; Li, Y.; Wang, H.; Ouyang, Y.; Guo, J.; Dai, H. J. Am. Chem. Soc 2011, 133, 19668.
[28] Zhou, L.; Zhou, L.-S.; Yang, M.-M.; Wu, D.; Liao, L.; Yan, K.;X, Q.; L, Z.-R.;P, H.-L.;Liu, Z.-F. Small 2013, 9, 1388.
[29] Li, B.; Zhou, L.; Wu, D.; Peng, H.-L.; Yan, K.; Zhou, Y.; Liu, Z.-F. ACS Nano 2011, 5, 5957.
[30] Some, S.; Kim, J.; Lee, K.; Kulkarni, A.; Yoon, Y.; Lee, S.; Kim, T.; Lee, H. Adv. Mater. 2012, 24, 5481.
[31] Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano Lett. 2008, 8, 4603.
[32] Wei, P.; Liu, N.; Lee, H. R.; Adijanto, E.; Ci, L.; Naab, B. D.; Zhong, J. Q.; Park, J.; Chen, W.; Cui, Y.; Bao, Z. N. Nano Lett. 2013, 13, 1890.
[33] Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y. M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P. Nano Lett. 2008, 9, 388.
[34] Bult, J. B.; Crisp, R.; Perkins, C. L.; Blackburn, J. L. ACS Nano 2013, 7, 7251.
[35] Gao, M.; Pan, Y.; Zhang, C.; Hu, H.; Yang, R.; Lu, H.; Cai, J.; Du, S.; Liu, F.; Gao, H.-J. Appl. Phys. Lett. 2010, 96, 053109.
[36] Wei, D.-C.; Liu, Y.-Q.; Wang, Y.; Zhang, H.-L.; Huang, L.-P.; Yu, G. Nano Lett. 2009, 9, 1752.
[37] Qu, L.; Liu, Y., Baek, J. B.; Dai, L.-M. ACS Nano 2010, 4, 1321.
[38] Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337.
[39] Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. ACS Nano 2011, 5, 4112.
[40] Luo, Z.; Lim, S.-H.; Tian, Z.-Q.; Shang, J.-Z.; Lai, L.-F.; MacDonald, B.; Fu, C.; Shen, Z.-X.; Yu, T.; Lin, J.-Y. J. Mater. Chem. 2011, 21, 8038.
[41] Zhang, C.-H.; Fu, L.; Liu, N.; Liu, M.-H.; Wang, Y.-Y.; Liu, Z.-F. Adv. Mater. 2011, 23, 1020.
[42] Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z.; Storr, K.; Balicas, L. Nat. Mater.. 2010, 9, 430.
[43] Liu, L.; Feng, Y.; Shen, Z. X. Phys. Rev. B 2003, 68, 104102.
[44] Bokdam, M.; Khomyakov, P. A.; Brocks, G.; Zhong, Z.; Kelly, P. J. Nano Lett. 2011, 11, 4631.
[45] Kim, B. H.; Hong, S. J.; Baek, S. J.; Jeong, H. Y.; Park, N.; Lee, M.; Lee, S. W.; Park, M.; Chu, S. W.; Shin, H. S.; Lim, J.; Lee, J. C.; Jun, Y.; Park, Y. W. Sci. Rep. 2012, 2, 690.
[46] Castro, E. V.; Novoselov, K.; Morozov, S.; Peres, N.; Dos Santos, J. L.; Nilsson, J.; Guinea, F.; Geim, A.; Neto, A. C. Phys. Rev. Lett. 2007, 99, 216802.
[47] Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.
[48] Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science 2006, 313, 951.
[49] Pinto, H.; Jones, R.; Goss, J.; Briddon, P. J. Phys.-Condens. Matter 2009, 21, 402001.
[50] Park, J.; Jo, S. B.; Yu, Y. J.; Kim, Y.; Yang, J. W.; Lee, W. H.; Kim, H. H.; Hong, B. H.; Kim, P.; Cho, K. Adv. Mater. 2012, 24, 407.
[51] Samuels, A. J.; Carey, J. D. ACS Nano 2013, 7, 2790.
[52] Yu, W. J.; Liao, L.; Chae, S. H.; Lee, Y. H.; Duan, X. Nano Lett. 2011, 11, 4759.
[53] Kim, S.; Shin, D. H.; Kim, C. O.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S.-H. ACS Nano 2013, 7, 5168.
[54] Huard,B.; Sulpizio, J.; Stander, N.; Todd, K.; Yang, B.; Goldhaber-Gordon, D. Phys. Rev. Lett. 2007, 98, 236803.
[55] Özyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov, L. S.; Kim, P. Phys. Rev. Lett. 2007, 99, 166804.
[56] Farmer, D. B.; Lin, Y.-M.; Afzali-Ardakani, A.; Avouris, P. Appl. Phys. Lett. 2009, 94, 213106.
[57] Peters, E. C.; Lee, E. J.; Burghard, M.; Kern, K. Appl. Phys. Lett. 2010, 97, 193102.
[58] Yan, K.; Wu, D.; Peng, H.; Jin, L.; Fu, Q.; Bao, X.; Liu, Z. Nat. Commun. 2012, 3, 1280.
[59] Wu, D.; Yan, K.; Zhou, Y.; Wang, H.; Lin, L.; Peng, H.; Liu, Z. J. Am. Chem. Soc. 2013, 135, 10926.
/
〈 |
|
〉 |