温敏性Pluronic-b-poly((ε-caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))的合成和性能研究
收稿日期: 2014-03-21
网络出版日期: 2014-04-17
基金资助
项目受国家自然科学基金(No. 21274039)、上海市自然科学基金(No. 12ZR1427300)和上海市教委重点学科建设(No. J50102)资助.
Synthesis and Properties of Thermo-sensitive Amphiphilic Pluronic-b-poly((ε-caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))
Received date: 2014-03-21
Online published: 2014-04-17
Supported by
Project supported by the National Natural Science Foundation of China (No. 21274039), the Shanghai Municipal Natural Science Foundation (No. 12ZR1427300) and the Leading Academic Discipline Project of Shanghai Education Committee, China (No. J50102).
以聚乙二醇99-b-聚丙二醇69-b-聚乙二醇99(PEO99-b-PPO69-b-PEO99 Pluronic F127)为大分子引发剂,引发己内酯(CL)和6-乙酸苄酯-己内酯(BCL)开环聚合得到一系列不同BCL含量的两亲性嵌段共聚物Pluronic-b-poly((ε- caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))(Pluronic-b-P(CL-co-BCL)). 通过核磁共振,红外光谱和凝胶渗透色谱确定共聚物的结构、组成和分子量及其分布. 热重分析、X射线衍射和差示扫描量热法的结果表明,聚合物的热稳定性及结晶性均可通过调控共聚物中BCL的含量进行调控. 通过乳化溶媒挥发法制备聚合物胶束,并用荧光光谱,扫描电镜和粒径分析仪研究聚合物胶束的形成,形态和大小,结果表明胶束呈现规整球形且分布较为均匀,均具有较小的临界胶束浓度且受聚合物中BCL比例的影响;由光散射的结果看出,随着BCL的引入,Pluronic-b-P(CL-co-BCL)胶束粒径呈现出可逆的温度敏感性变化.
杜征臻 , 张静 , 张琰 , 郎美东 . 温敏性Pluronic-b-poly((ε-caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))的合成和性能研究[J]. 化学学报, 2014 , 72(5) : 609 -614 . DOI: 10.6023/A14030211
In this paper, a series of amphiphilic block copolymers Pluronic-b-poly(ε-caprolactone-co-benzyl-oxycarbonyl-methyl-ε-caprolactone) (Pluronic-b-P(CL-co-BCL)) were synthesized successfully via ring-opening polymerization (ROP) of ε-caprolactone (CL) and 6-(benzyl-oxycarbonylmethyl)-ε-caprolactone (BCL) using stannous octoate as the catalyst (weight ratio: 0.5‰) and PEO99-b-PPO69-b-PEO99 (Pluronic F127) as macroinitiator. 1H NMR, GPC and FT-IR were employed to determine the structure, composition, molecular weight and molecular weight distribution. The result of 1H NMR showed the content of BCL in the copolymers was less than the theoretical value, which may be attributed to the low reactivity of BCL due to the steric hindrance of Bn substituent on the δ position of CL. The number-average molecular weight by GPC was different from the value calculated by 1H NMR, it may be attributed to the hydrodynamic volume of the copolymers being different from that of the poly(styrene) as the GPC calibration in THF. The thermal properties of the copolymers were evaluated by TGA, DSC and XRD. The results indicated that the stability and the crystallinity of the copolymers could be adjusted by the content of the BCL. Due to the BCL units in the copolymers reduced the regularity of the PCL chain and intensively disrupted its crystallinity and the steric hindrance effect of BCL trammeled the movement of the PCL chain, the melting point (Tm) of CL segment in copolymer shifted down and the glass transition temperature (Tg) of copolymer increased with the increase of the content of BCL respectively. Emulsion/solvent evaporation technique was employed to prepare the polymeric micelle solution. The formation, size and morphologies of the micelles in aqueous solution were studied by fluorescence spectroscopy, TEM and DLS, the results demonstrated that the micelles were spherical spheres with narrow distribution, the copolymer had low critical micelles concentration (CMC) and depended on the content of BCL in the copolymer. Moreover, DLS results showed that the Pluronic-b-P(CL-co-BCL) had a reversible thermosensitivity due to the introduction of BCL.
[1] Basak, R.; Bandyopadhyay, R. Langmuir 2013, 29, 4350.
[2] Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Mendes, E.; Dubruel, P. Eur. Polym. J. 2014, 53, 126.
[3] Nita, L. E.; Chiriac, A.; Bercea, M.; Wolf, B. A. Colloids Surf., B 2013, 103, 544.
[4] Shao, F.-K.; Wu, W.; Zha, L.-S.; Zhang, Y. Acta Chim. Sinica 2008, 66, 138. (邵芳可, 吴唯, 查刘生, 张琰, 化学学报, 2008, 66, 138.)
[5] Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2003, 36, 9979.
[6] Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A. J. Adv. Drug Delivery Rev. 2007, 59, 187.
[7] Woodruff, M. A.; Hutmacher, D. W. Prog. Polym. Sci. 2010, 35, 1217.
[8] Gao, X.; Wang, B.; Wei, X.; Rao, W.; Ai, F.; Zhao, F.; Men, K.; Yang, B.; Liu, X.; Huang, M.; Gou, M.; Qian, Z.; Huang, N.; Wei, Y. Int. J. Nanomed. 2013, 8, 971.
[9] Li, Y.-Y.; Li, L.; Dong, H.-Q.; Cai, X.-J.; Ren, T.-B. Mater. Sci. Eng., C 2013, 33, 2698.
[10] Ha, J. C.; Kim, S. Y.; Lee, Y. M. J. Controlled Release 1999, 62, 381.
[11] Kim, S. Y.; Ha, J. C.; Lee, Y. M. J. Controlled Release 2000, 65, 345.
[12] Cohn, D.; Hotovely Salomon, A. Biomaterials 2005, 26, 2297.
[13] Detrembleur, C.; Mazza, M.; Halleux, O.; Lecomte, P.; Mecerreyes, D.; Hedrick, J. L.; Jérôme, R. Macromolecules 2000, 33, 14.
[14] Riva, R.; Schmeits, S.; Jérôme, C.; Jérôme, R.; Lecomte, P. Macromolecules 2007, 40, 796.
[15] Mahmud, A.; Xiong, X.-B.; Lavasanifar, A. Macromolecules 2006, 39, 9419.
[16] Falamarzian, A.; Lavasanifar, A. Colloids Surf., B 2010, 81, 313.
[17] Falamarzian, A.; Lavasanifar, A. Macromol. Biosci. 2010, 10, 648.
[18] Zhang, Y.; Li, J.; Du, Z.; Lang, M. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 188.
[19] Yan, J.; Zhang, Y.; Xiao, Y.; Zhang, Y.; Lang, M. React. Funct. Polym. 2010, 70, 400.
[20] Yan, J.; Ye, Z.; Luo, H.; Chen, M.; Zhou, Y.; Tan, W.; Xiao, Y.; Zhang, Y.; Lang, M. Polym. Chem. 2011, 2, 1331.
[21] Sun, Y.; Dai, W.-F.; Zhang, Q.-C.; Zhang, Y.; Lang, M.-D. Acta Chim. Sinica 2009, 67, 1259. (孙琰, 戴炜枫, 张清醇, 张琰, 郎美东, 化学学报, 2009, 67, 1259.)
[22] Habnouni, S. E.; Darcos, V.; Coudane, J. Macromol. Rapid Commun. 2009, 30, 165.
[23] Shuai, X.; Porbeni, F. E.; Wei, M.; Bullions, T.; Tonelli, A. E. Macromolecules 2002, 35, 2401.
[24] Liu, J.; Zhang, Y.; Yan, J.; Lang, M. J. Mater. Chem. 2011, 21, 6677.
[25] Yan, J.; Ye, Z.; Chen, M.; Liu, Z.; Xiao, Y.; Zhang, Y.; Zhou, Y.; Tan, W.; Lang, M. Biomacromolecules 2011, 12, 2562.
[26] Lei, Z.-L.; Liu, Y.-L. Acta Chim. Sinica 2006, 64, 2403. (雷忠利, 刘亚兰, 化学学报, 2006, 64, 2403.)
[27] Ru, M.; Dai, W.-F.; Du, Z.-Z.; Lang, M.-D. Acta Chim. Sinica 2008, 66, 1884. (茹敏良, 戴炜枫, 杜征臻, 郎美东, 化学学报, 2008, 66, 1884.)
[28] Riess, G. Prog. Polym. Sci. 2003, 28, 1107.
[29] Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun. 2009, 30, 267.
[30] Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Macromolecules 1994, 27, 2414.
[31] Zhang, M.; Djabourov, M.; Bourgaux, C.; Bouchemal, K. Int. J. Pharm. 2013, 454, 599.
[32] Safaei Nikouei, N.; Lavasanifar, A. Acta Biomater. 2011, 7, 3708.
[33] Gu, G.; Xia, H.; Hu, Q.; Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Tu, Y.; Pang, Z.; Song, Q.; Yao, L.; Chen, H.; Gao, X.; Chen, J. Biomaterials 2013, 34, 196.
/
〈 |
|
〉 |