研究论文

二次有机气溶胶估算方法比较研究

  • 郭松 ,
  • 胡敏 ,
  • 郭庆丰 ,
  • 尚冬杰
展开
  • 北京大学环境模拟与污染控制国家重点实验室 北京大学环境科学与工程学院 北京 100871

收稿日期: 2014-04-14

  网络出版日期: 2014-05-11

基金资助

项目受国家重点基础研究发展计划(No.2013CB228503)和国家自然科学基金(Nos.21025728,21190052,GZ663,41121004)资助.

Comparison of Secondary Organic Aerosol Estimation Methods

  • Guo Song ,
  • Hu Min ,
  • Guo Qingfeng ,
  • Shang Dongjie
Expand
  • State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871

Received date: 2014-04-14

  Online published: 2014-05-11

Supported by

Project supported by the National Basic Research Program of China (No.2013CB228503) and the National Natural Science Foundation of China (Nos.21025728, 21190052, GZ663, 41121004).

摘要

为研究北京夏季二次有机气溶胶(SOA)浓度,比较多种SOA估算方法的不确定性和在我国的适用性,在CAREBEIJING 2008大型观测期间在城市点北大点和郊区点榆垡点采集大气颗粒物PM2.5样品,利用多种方法对二次有机碳(SOC)的浓度进行了估算,估算方法包括二次有机示踪物产率法、非一次源OC法、非生物质燃烧水溶性有机碳法(WSOC)和元素碳示踪有机碳/元素碳比值法.估算结果表明,二次有机气溶胶已经成为北京颗粒有机物的重要组成部分,夏季SOC可以占总有机碳(OC)的50%甚至更高。通过模拟我国典型的生物质燃烧,实测建立适合我国的获得了非生物质燃烧WSOC方法中的重要参数,即获得方法中重要参数生物质燃烧排放颗粒物中WSOC/OC的比值,我国生物质燃烧颗粒物中该比值平均为0.48±0.04.多种方法结果均表明,SOA已经成为北京颗粒有机物的重要组成部分,所占比例可以达到50%甚至更高.利用化学质量守恒模型(CMB)和示踪物产率法对颗粒有机物来源进行闭合发现,依靠目前的示踪物技术北京大气颗粒有机物中仍然有20%~27%的来源不清楚.通过综合比较了多种SOC估算方法,确定了各方法在我国的适用性: 示踪物产率法、非一次源OC法和EC示踪OC/EC比值法可适用于我国大气中SOC的估算,但是非生物质燃烧WSOC方法仅适用于我国大气中水溶性SOC的估算,但是不同方法之间存在的系统误差.本研究还对这几种方法的不确定性做了初步的分析,为其他研究者选择估算方法提供参考和依据.示踪物产率法仅估算了几种特定VOCs前体物对SOC贡献,因此低估了总的SOC,但是这种方法是目前唯一一种可以估算特定VOCs前体物对SOC贡献的方法;同样地,非生物质燃烧WSOC法仅估算了水溶性的SOC,因此也低估了总的SOC;非一次源OC法高估了SOC,这主要是由于未能解析出的一次源OC造成的.而且这种高估在城市地区更为显著,主要是因为城市地区一次源相对比较复杂造成的;非生物质燃烧WSOC法低估了总的SOC,而且这种方法仅适用于我国水溶性SOC的估算;EC示踪OC/EC比值法的主要不确定性来自于一次源OC/EC比值的确定,由于这个比值造成的单点误差最高可高估54%或低估64%.

本文引用格式

郭松 , 胡敏 , 郭庆丰 , 尚冬杰 . 二次有机气溶胶估算方法比较研究[J]. 化学学报, 2014 , 72(6) : 658 -666 . DOI: 10.6023/A14040254

Abstract

To investigate the secondary organic aerosol (SOA) formation in Beijing, fine particle (PM2.5) samples were collected at an urban site (Peking University, PKU) and a rural site (Yufa) during CAREBEIJING 2008 summer intensive field campaign.Several approaches were used to estimate ambient secondary organic aerosolsSOA concentrations, including tracer-yield method, non-primary organic carbon method (receptor model, Chemical Mass Balance model), non-biomass burning water soluble organic carbon (WSOC) method and EC tracer OC/EC ratio method.The results indicated secondary formation has become major contributor to organic aerosols in Beijing, accounting for 50% or more of the total OC during the campaign.To develop non-biomass burning WSOC method, simulation of typical Chinese biomass burning was conducted to obtain the important parameters.The average WSOC/OC ratio in Chinese biomass burning is 0.48±0.04.This ratio can be used in non-biomass burning WSOC method to estimate SOC of China.The results from different methods all indicated secondary formation has become major contributor to organic aerosols in Beijing, accounting for 50% or more of the total OC.A closure study was made by combination of CMB model and tracer-yield method.Five primary sources, including vegetative detritus, biomass burning, coal burning, gasoline engines and diesel engines, and four secondary organic aerosols derived from isoprene, α-pinene, β-caryophyllene and toluene were apportioned.To the current knowledge, about 20%~27% of the OC sources still remain unknown.Applicability of these SOC methods in China was tested by comparing the different methods.Tracer-yield method, CMB model and EC tracer OC/EC ratio method can be used to estimate SOC in China.However, non-biomass burning WSOC method can only be used to estimate water-soluble SOC.Uncertainty analysis was conducted to help researchers to choose determine the proper method to estimate SOC in China.Tracer-yield method underestimates total SOC, but it is the only approach thatbecause it can only estimate SOCs from several specific precursors.Similarly, non-biomass burning WSOC method also underestimate SOC.Non-primary OC method overestimates SOC due to unapportioned primary OC, especially in urban area where the particle sources are complicated.Non-biomass burning WSOC method underestimate SOC, and can only be used to estimate water soluble SOC in China.The uncertainty of EC-tracer OC/EC ratio method is mainly from the primary OC/EC ratio.The largest overestimation and underestimation of single point value can be 54% and 64%.

参考文献

[1] Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; Swietlicki, E.; Putaud, J.P.; Balkanski, Y.; Fuzzi, S.; Horth, J.; Moortgat, G.K.; Winterhalter, R.; Myhre, C.E.L.; Tsigaridis, K.; Vignati, E.; Stephanou, E.G.; Wilson, J.Atmos.Chem.Phys.2005, 5, 1053.

[2] Tsigaridis, K.; Kanakidou, M.Atmos.Chem.Phys.2003, 3, 1849.

[3] Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L.Atmos.Chem.Phys.2009, 9, 2891.

[4] Goldstein, A.H.; Galbally, I.E.Environ.Sci.Technol.2007, 41, 1514.

[5] Zhang, R.Y.Science 2010, 328, 1366.

[6] Zheng, J.; Hu, M.; Zhang, R.; Yue, D.; Wang, Z.; Guo, S.; Li, X.; Bohn, B.; Shao, M.; He, L.; Huang, X.; Wiedensohler, A.; Zhu, T.Atmos.Chem.Phys.2011, 11, 7755.

[7] Khalizov, A.F.; Lin, Y.; Qiu, C.; Guo, S.; Collins, D.; Zhang, R.Environ.Sci.Technol.2013, 47, 2254.

[8] Zhang, R.Y.; Khalizov, A.F.; Pagels, J.; Zhang, D.; Xue, H.X.; McMurry, P.H.Proc.Natl.Acad.Sci.U.S.A.2008, 105, 10291.

[9] Seinfeld, J.H.; Pandis, S.N.Atmospheric Chemistry and Physics-from Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1998.

[10] Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; Hamilton, J.F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M.E.; Jimenez, J.L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, T.F.; Monod, A.; Prevot, A.S.H.; Seinfeld, J.H.; Surratt, J.D.; Szmigielski, R.; Wildt, J.Atmos.Chem.Phys.2009, 9, 5155.

[11] Huang, X.F.; He, L.Y.; Hu, M.; Canagaratna, M.R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.W.; Liu, X.G.; Zhang, Y.H.; Jayne, J.T.; Ng, N.L.; Worsnop, D.R.Atmos.Chem.Phys.2010, 10, 8933.

[12] Sun, J.Y.; Zhang, Q.; Canagaratna, M.R.; Zhang, Y.M.; Ng, N.L.; Sun, Y.L.; Jayne, J.T.; Zhang, X.C.; Zhang, X.Y.; Worsnop, D.R.Atmos.Environ.2010, 44, 131.

[13] Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Yang, T.; Jiang, Q.; Dong, H.B.; Li, J.; Jia, J.J.Atmos.Chem.Phys.2013, 13, 4577.

[14] Guo, S.; Hu, M.; Guo, Q.F.; Zhang, X.; Zheng, M.; Zheng, J.; Chang, C.C.; Schauer, J.J.; Zhang, R.Y.Environ.Sci.Technol.2012, 46, 9846.

[15] Jia, L.; Xu, Y.F.Acta Chim.Sinica 2010, 68, 2429.(贾龙, 徐永福, 化学学报, 2010, 68, 2429.)

[16] Lü, Z.F.; Hao, J.M.; Li, J.H.; Wu, S.Acta Chim.Sinica 2008, 66, 419.(吕子峰, 郝吉明, 李俊华, 武山, 化学学报, 2008, 66, 419.)

[17] Sun, T.L.; Wang, Y.D.; Zhang, C.X.; Sun, X.M.; Hu, J.T.Acta Chim Sinica 2011, 69, 1965.(孙廷利, 王玉东, 张晨曦, 孙孝敏, 胡敬田, 化学学报, 2011, 69, 1965.)

[18] Guo, S.; Hu, M.; Shang, D.; Guo, Q.; Hu, W.Acta Chim.Sinica 2014, 72, 145.(郭松, 胡敏, 尚冬杰, 郭庆丰, 胡伟伟, 化学学报, 2014, 72, 145.)

[19] Docherty, K.S.; Stone, E.A.; Ulbrich, I.M.; DeCarlo, P.F.; Snyder, D.C.; Schauer, J.J.; Peltier, R.E.; Weber, R.J.; Murphy, S.M.; Seinfeld, J.H.; Grover, B.D.; Eatough, D.J.; Jimenez, J.L.Environ.Sci.Technol.2008, 42, 7655.

[20] Guo, S.; Hu, M.; Wang, Z.B.; Slanina, J.; Zhao, Y.L.Atmos.Chem.Phys.2010, 10, 947.

[21] Hu, M.; Guo, S.IGAC Newsletter 2009, 42, 10.

[22] Offenberg, J.H.; Lewis, C.W.; Lewandowski, M.; Jaoui, M.; Kleindienst, T.E.; Edney, E.O.Environ.Sci.Technol.2007, 41, 3972.

[23] Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O.Atmos.Environ.2007, 41, 8288.

[24] Hu, D.; Bian, Q.; Li, T.W.Y.; Lau, A.K.H.; Yu, J.Z.J.Geophys.Res., [Atmos.] 2008, 113 (D2206).

[25] Wang, Q.; Shao, M.; Zhang, Y.; Wei, Y.; Hu, M.; Guo, S.Atmos.Chem.Phys.2009, 9, 8573.

[26] Zheng, M.; Salmon, L.G.; Schauer, J.J.; Zeng, L.M.; Kiang, C.S.; Zhang, Y.H.; Cass, G.R.Atmos.Environ.2005, 39, 3967.

[27] Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J.J.; Zhang, R.Atmos.Chem.Phys.2013, 13, 8303.

[28] Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T.Environ.Sci.Technol.1993, 27, 2700.

[29] Fine, P.M.; Cass, G.R.; Simoneit, B.R.T.Environ.Eng.Sci.2004, 21, 387.

[30] Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T.Environ.Sci.Technol.1999, 33, 1578.

[31] Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T.Environ.Sci.Technol.2002, 36, 1169.

[32] Weber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.; Yan, B.; Zheng, M.; de Gouw, J.; Warneke, C.; Brock, C.; Holloway, J.S.; Atlas, E.L.; Edgerton, E.J.Geophys.Res., [Atmos.] 2007, 112 (D1302).

[33] Peltier, R.E.; Weber, R.J.; Sullivan, A.P.Aerosol Sci.Technol.2007, 41, 1117.

[34] He, L.Y.; Lin, Y.; Huang, X.F.; Guo, S.; Xue, L.; Su, Q.; Hu, M.; Luan, S.J.; Zhang, Y.H.Atmos.Chem.Phys.2010, 10, 11535.

[35] Turpin, B.J.; Huntzicker, J.J.Atmos.Environ.1995, 29, 3527.

[36] Lin, P.; Hu, M.; Deng, Z.; Slanina, J.; Han, S.; Kondo, Y.; Takegawa, N.; Miyazaki, Y.; Zhao, Y.; Sugimoto, N.J.Geophys.Res., [Atmos.] 2009, 114 (D00G11).

[37] Snyder, D.C.; Rutter, A.P.; Collins, R.; Worley, C.; Schauer, J.J.Aerosol Sci.Technol.2009, 43, 1099.

[38] Kondo, Y.; Miyazaki, Y.; Takegawa, N.; Miyakawa, T.; Weber, R.J.; Jimenez, J.L.; Zhang, Q.; Worsnop, D.R.J.Geophys.Res., [Atmos.] 2007, 112 (D01203).

[39] Lee, S.; Baumann, K.; Schauer, J.J.; Sheesley, R.J.; Naeher, L.P.; Meinardi, S.; Blake, D.R.; Edgerton, E.S.; Russell, A.G.; Clements, M.Environ.Sci.Technol.2005, 39, 9049.

[40] Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T.Environ.Sci.Technol.2001, 35, 1716.

[41] Zhao, Y.L.; Hu, M.; Slanina, S.; Zhang, Y.H.Environ.Sci.Technol.2007, 41, 99.

[42] Huang, X.F.; Hu, M.; He, L.Y.; Tang, X.Y.Atmos.Environ.2005, 39, 2819.

[43] Hu, M.; Zhang, J.; Wu, Z.J.Sci.China, Ser.B 2005, 48, 265.

[44] Hu, W.W.; Hu, M.; Deng, Z.Q.; Xiao, R.; Kondo, Y.; Takegawa, N.; Zhao, Y.J.; Guo, S.; Zhang, Y.H.Atmos.Chem.Phys.2012, 12, 1811.

文章导航

/