太阳能电池材料-铜锌锡硫化合物薄膜制备及器件应用研究进展
收稿日期: 2014-04-18
网络出版日期: 2014-05-12
基金资助
项目受国家自然科学基金面上项目(Nos.61077021,61076016)及南京邮电大学基金(Nos.NY212050,NY212076)资助.
Progress in the Fabrication of Cu2ZnSnS4 Thin Film for Solar Cells
Received date: 2014-04-18
Online published: 2014-05-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos.61077021, 61076016) and the Funding from Nanjing University of Post & Telecommunications (Nos.NY212050, NY212076).
锌黄锡矿结构的CZTS(铜锌锡硫)材料与目前在薄膜太阳能电池领域表现出色的黄铜矿结构的CIGS(铜铟镓硒)材料具有相似的晶体结构,且CZTS有着很好的光电性能,组成元素在地球上含量丰富,安全无毒,非常适合用来发展高效、廉价的太阳能电池.近期CZTS类太阳能电池的最高效率已达到12.6%,在科研和产业领域引起了广泛关注.在简介了“新星”太阳能电池材料CZTS的性质及薄膜太阳能电池器件的基本结构之后,重点总结了CZTS薄膜的制备方法(真空、非真空法)以及相应器件效率,其中对众多非真空制备法进行了独到的归类总结.最后,对CZTS薄膜的优化方法进行了分析,并对其未来发展方向做了展望.
范勇 , 秦宏磊 , 密保秀 , 高志强 , 黄维 . 太阳能电池材料-铜锌锡硫化合物薄膜制备及器件应用研究进展[J]. 化学学报, 2014 , 72(6) : 643 -652 . DOI: 10.6023/A14040259
Cu(In,Ga)Se2 (CIGS) is a widely investigated material for thin film solar cells in the last decade.However, it has the concern of short availability of constituent elements (e.g. In, Ga) which limits its development.Research focused on new substitute of light absorber is eagerly needed.As an earth-abundant semiconductor, CZTS (Cu2ZnSnS4) has attracted considerable interest recently.CZTS has lots of similarities to CIGS, and is considered to be a promising material in the field of thin film solar cells owning to its fascinating optoelectronic properties, low-cost fabrication, and non-toxic nature.In this article, after introducing the features of CZTS material and the basic structure of CZTS thin film solar cells, different methods for the fabrication of CZTS thin films, as well as the corresponding device performance are discussed.CZTS thin film fabrication methods include vacuum based approaches and non-vacuum based approaches, with the former usually has the advantage of easy control of the chemical composition as well as good reproducibility; and the latter often has merits of low-cost, less-energy consumable, and suitable for large area deposition.Firstly, vacuum based approaches, including sputtering, evaporation and pulsed laser deposition, are discussed.Secondly, according to the different condition of the precursors, three subtypes of non-vacuum based approaches are presented (nanoparticle ink precursors, solution precursors, mixture precursors of solution and nanoparticle ink).Meanwhile, corresponding device efficiencies are summarized.Up to date, the power conversion efficiencies of 12.6% for CZTS based solar cells have been achieved, which is enormously encouraging.The new champion device was fabricated using a recently described hydrazine pure-solution approach, which significantly improves the coating uniformity and film structure.What's more, various film treatment strategies to optimize the CZTS thin film, such as selenization/sulfurization and elemental composition tuning (e.g. S/Se, Zn/Cu), are outlined here; the focus of future research and development are proposed.
Key words: CZTS; thin film fabrication; solar cells; efficiencies; optimization
[1] Li, G.; Zhu, R.; Yang, Y.Nat.Photonics 2012, 6, 153.
[2] Rahman, M.Z.Renew.Sust.Energ.Rev.2014, 30, 734.
[3] Rhee, J.H.; Chung, C.C.; Diau, E.W.G.NPG Asia Mater.2013, 5, 68.
[4] Labat, F.; Le, B.T.; Ciofini, I.; Adamo, C.Acc.Chem.Res.2012, 45, 1268.
[5] (a) Liu, Z.; Xu, F.; Yan, D.D.Acta Chim.Sinica 2014, 72, 171.(刘震, 徐丰, 严大东, 化学学报, 2014, 72, 171.)
(b) Tang, X.; Wang, Y.X.Acta Chim.Sinica 2014, 71, 193.(唐笑, 汪禹汛, 化学学报, 2014, 71, 193.)
(c) Liang, M.; Xu, Y.J.; Wang, X.D.; Liu, X.J.; Sun, Z.; Xue, S.Acta Chim.Sinica 2011, 69, 2092.(梁茂, 徐英军, 王旭达, 刘秀杰, 孙喆, 薛松, 化学学报, 2011, 69, 2092.)
(d) Li, Z.F.; Peng, Q.; He, P.; Wang, Y.L.; Hou, Q.F.; Li, B.L.; Tian, W.Chin.J.Org.Chem.2012, 32, 834.(李在房, 彭强, 和平, 王艳玲, 侯秋飞, 李本林, 田文晶, 有机化学, 2012, 32, 834.)
(e) Ye, H.Y.; Li, W.; Li, W.S.Chin.J.Org.Chem.2012, 32, 266.(叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
(f) Zhang, T.H.; Pu, L.Y.; Zhao, S.L.; Xu, Z.; Yang, L.; Liu, X.Z.; Ju, S.T.Chin.J.Org.Chem.2011, 31, 260.(张天慧, 朴玲钰, 赵谡玲, 徐征, 杨磊, 刘祥志, 鞠思婷, 有机化学, 2011, 31, 260.)
[6] Zhu, T.J.; Mu, D.H.; Qin, H.L.; Song, J.; Mi, B.X.; Zhao, X.Y.; Gao, Z.Q.; Huang, W.Org.Electron.2014, 15, 969.
[7] Zhao, X.Y.; Li, Z.G.; Zhu, T.J.; Mi, B.X.; Gao, Z.Q.; Huang, W.J.Phys.D: Appl.Phys.2013, 46, 195105.
[8] Chiril?, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A.R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N.Nat.Mater.2013, 12, 1107.
[9] Zhao, Y.; Burda, C.Energy Environ.Sci.2012, 5, 5564.
[10] Schorr, S.Thin Solid Films 2007, 515, 5985.
[11] Todorov, T.K.; Reuter, K.B.; Mitzi, D.B.Adv.Mater.2010, 22, 156.
[12] Wang, H.X.Int.J.Photoenergy 2011, 1.
[13] Ramasamy, K.; Malik, M.A.; O'Brien, P.Chem.Commun.2012, 48, 5703.
[14] Zhou, H; Hsu, W.C.; Duan, H.S.; Bob, B.; Yang, W.; Song, T.B.; Hsu, C.J.; Yang, Y.Energy Environ.Sci.2013, 6, 2822.
[15] Suryawanshi, M.P.; Agawane, G.L.; Bhosale, S.M.; Shin, S.W.; Patil, P.S.; Kim, J.H.; Moholkar, A.V.Mater.Sci.Technol.2013, 28, 98.
[16] Schorr, S.Thin Solid Films 2007, 515, 5985.
[17] Shockley, W.; Queisser, H.J.J.Appl.Phys.1961, 32, 510.
[18] Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, k.; Yamazaki, M.; Araki H.; Takeuchi, A.Thin Solid Film 2009, 517, 2455.
[19] Santoni, A.; Biccari, F.; Malerba, C.; Valentini, M; Chierchia, R.; Mittiga A.J.Phys.D: Appl.Phys.2013, 46, 175101.
[20] Weinhardt, L.; Heske, C.; Umbach, E.; Niesen, T.P.; Visbeck, S.; Karg, F.Appl.Phys.Lett.2004, 84, 3175.
[21] Chen, S.; Walsh, A.; Yang, J.H.; Gong, X.G.; Sun, L.; Yang, P.X.; Chu, J.H.; Wei, S.H.Phys.Rev.B 2011, 83, 125201.
[22] Rao, G.V.; Sauberlich, F.; Klein, A.Appl.Phys.Lett.2005, 87, 032101.
[23] Ito, K.; Nakazawa, T.Jpn.J.Appl.Phys.1988, 27, 2094.
[24] Seol, J.S.; Lee, S.Y.; Lee, J.C.; Nam, H.D.; Kim, K.H.Sol.Energy Mater.Sol.Cells 2003, 75, 155.
[25] Tanaka, T.; Nagatomo, T.; Kawasaki, D.; Nishio, M.; Guo, Q.; Wakahara, A.; Yoshida, A.; Ogawa, H.J.Phys.Chem.Solids 2005, 66, 1978.
[26] Jimbo, K.; Kimura, R.; Kamimura, T.; Yamada, S.; Maw, W.S.; Araki, H.; Oishi, K.; Katagiri, H.Thin Solid Films 2007, 515, 5997.
[27] Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw, W.S.; Fukano, T.; Ito, T.; Motohiro, T.Appl.Phys.Express 2008, 1, 041201.
[28] Liu, F.Y.; Zhang, K.; Lai, Y.Q.; Li, J.; Zhang, Z.A.; Liu, Y.X.Electrochem.Solid ST.2010, 13, 379.
[29] Chawla, V.; Clemens, B.P.38th IEEE Photovoltaics Specialists Conference (PVSC), Austin, Texas, 2012, pp.002990~002992.
[30] Ericson, T.; Kubart, T.; Scragg, J.J.; Björkman, C.P.Thin Solid Films 2012, 520, 7093.
[31] Scragg, J.J.; Kubart, T.; Wötjen, J.T.; Ericson, T.; Linnarsson, M.K.; Björkman, C.P.Chem.Mater.2013, 25, 3162.
[32] Li, X.; Chen, Y.; Sang, J.; Mi, B.X.; Mu, D.H., Li, Z.G.; Zhang, H.; Gao, Z.Q.; Huang, W.Org.Electron.2013, 14, 250.
[33] Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokota, T.Sol.Energy Mater.Sol.Cells 1997, 49, 407.
[34] Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S.; Bojarczuk, N.; Mitzi, D.; Guha, S.Appl.Phys.Lett.2010, 97, 143508.
[35] Schubert, B.A.; Marsen, B.; Cinque, S.; Unold, T.; Klenk, R.; Schorr, S.; Schock, H.W.Prog.Photovoltaics 2011, 19, 93.
[36] Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N.A.; Chey, S.J.; Guha, S.Prog.Photovoltaics Res.Appl.2013, 21, 72.
[37] Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W.C.; Goodrich, A.; Noufi, R.Sol.Energy Mater Sol.Cells 2012, 101, 154.
[38] Sekiguchi, K.; Tanaka, K.; Moriya, K.; Uchiki, H.Phys.Status Solid C 2006, 3, 2618.
[39] Moriya, K.; Tanaka, K.; Uchiki, H.Jpn.J.Appl.Phys.2007, 46, 5780.
[40] Moholkar, A.V.; Shinde, S.S.; Babar, A.R.; Sim, K.U.; Lee, H.K.; Rajpure, K.Y.; Patil, P.S.; Bhosale, C.H.; Kim, J.H.J.Alloys.Compd.2011, 509, 7439.
[41] Cai, Q.; Liang, X.J.; Xiang, W.D.; Zhong, J.S.; Shao, G.M.; Zhao X.W.Mater.Rev.2012, 26, 138.(蔡倩, 梁晓娟, 向卫东, 钟家松, 邵明国, 赵肖为, 材料导报, 2012, 26, 138.)
[42] Moholkar, A.V.; Shinde, S.S.; Agawane, G.L.; Jo, S.H.; Rajpure, K.Y.; Patil, P.S.; Bhosale, C.H.; Kim, J.H.J.Alloys Compd.2012, 544, 145.
[43] Guo, Q.J.; Hillhouse, H.W.; Agrawal, R.J.Am.Chem.Soc.2009, 131, 11672.
[44] Guo, Q.J.; Ford, G.M.; Yang, W.C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R.J.Am.Chem.Soc.2010, 132, 17384.
[45] Wang, C.L.; Manthiram, A.ACS Sustain.Chem.Eng.2014, 2, 561.
[46] Cao, M.; Shen, Y.J.Cryst.Growth 2011, 318, 1117.
[47] Guo, Q.J.; Cao, Y.; Caspar, J.V.; Farneth, W.E.; Ionkin, A.S.; Johnson, L.K.; Lu, M.; Malajovich, I.; Radu, D.; Choudhury, K.R.; Rosenfeld, H.D.; Wu, W.38th IEEE Photovoltaics Specialists Conference (PVSC), Austin, Texas, 2012, pp.002993~002996.
[48] Chesman, A.S.R.; Duffy, N.W.; Peacock, S.; Waddington, L.; Webster, N.A.S.; Jasieniak, J.J.RSC Adv.2013, 3, 1017.
[49] Todorov, T.K.; Reuter, K.B.; Mitzi, D.B.Adv.Mater.2010, 22, 156.
[50] Todorov, T.K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D.B.Adv.Energy Mater.2013, 3, 34.
[51] Winkler, M.T.; Wang, W.; Gunawan, O.; Hovel, H.J.; Todorov, T.K.; Mitzi, D.B.Energy Environ.Sci.2014.
[52] Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H.Sol.Energy Mater.Sol.Cells 2009, 93, 583.
[53] Tanaka, K.; Fukui, Y.; Moritake, N.; Uchiki, H.Sol.Energy Mater.Sol.Cells 2011, 95, 838.
[54] Fischereder, A.; Rath, T.; Haas, W.; Amernitsch, H.; Albering, J.; Meischler, D.; Larissegger, S.; Edler, M.; Saf, R.; Hofer, F; Trimmel, G.Chem.Mater.2010, 22, 3399.
[55] Yang, W.B.; Duan, H.S.; Bob, B.; Zhou, H.P.; Lei, B.; Chung, C.H.; Li, S.H.; Hou, W.W.; Yang, Y.Adv.Mater.2012, 24, 6323.
[56] Cho, J.W.; Ismail, A.; Park, S.J.; Kim, W.; Yoon, S.; Min, B.K.ACS Appl.Mater.Interface 2013, 5, 4162.
[57] Wang, G.; Zhao, W.; Cui, Y.; Tian, Q.; Gao, S.; Hang, L.; Pan, D.ACS Appl.Mater.Interface 2013, 5, 10042.
[58] Todorov, T.; Sugimoto, H.; Gunawan, O.; Gokmen, T.; Mitzi, D.B.IEEE J.Photovolt.2014, 4, 483.
[59] Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B.Adv.Energy Mater.2013.
[60] Scragg, J.J.; Dale, P.J.; Peter, L.M.Thin Solid Films 2009, 517, 2481.
[61] Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Kotschau, I.; Schock, H.W.; Holzing, A.; Jost, S.; Hock, R.; Voβ, T.; Schulze; Kirbs, A.Thin Solid Films 2009, 517, 2511.
[62] Ahmed, S.; Reuter, K.B.; Gunawan, O.; Guo, L.; Romankiw, L.T.; Deligianni, H.Adv.Energy Mater.2012, 2, 253.
[63] Farinella, M.; Inguanta, R.; Spanò, T.; Livreri, P; Piazza, S.; Sunseri, C.Energy Procedia.2014, 44, 105.
[64] Nakayama, N.; Ito, K.Appl.Surf.Sci.1996, 92, 171.
[65] Kamoun, N.; Bouzouita, H.; Rezig, B.Thin Solid Films 2007, 515, 5949.
[66] Shinde, N.M.; Deokate, R.J.; Lokhande, C.D.J.Anal.Appl.Pyrol.2013, 100, 12.
[67] Yan, Z.; Wei, A.; Zhao, Y.; Liu, J.; Chen, X.Mater.Lett.2013, 111, 120.
[68] Weber, A.; Mainz, R.; Schock, H.W.J.Appl.Phys.2010, 107, 013516.
[69] Riha, S.C.; Parkinson, B.A.; Prieto, A.L.J.Am.Chem.Soc.2009, 131, 12054
/
〈 |
|
〉 |