研究论文

高对映选择性的有机催化的硝基烷烃对N-Boc靛红亚胺的不对称aza-Henry反应

  • 王雨卉 ,
  • 曹中艳 ,
  • 牛艳霏 ,
  • 赵小莉 ,
  • 周剑
展开
  • 华东师范大学化学系 绿色化学与化工过程绿色化上海市重点实验室 上海 200062

收稿日期: 2014-04-28

  网络出版日期: 2014-05-14

基金资助

项目受国家自然科学基金(Nos.21172075,21222204)资助.

Highly Enantioselective Organocatalytic aza-Henry Reaction of Nitroalkanes to N-Boc Isatin Ketimines

  • Wang Yuhui ,
  • Cao Zhongyan ,
  • Niu Yanfei ,
  • Zhao Xiaoli ,
  • Zhou Jian
Expand
  • Department of Chemistry, East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai 200062

Received date: 2014-04-28

  Online published: 2014-05-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21172075, 21222204).

摘要

研究实现了高对映选择性的硝基烷烃对N-Boc靛红亚胺1的不对称aza-Henry反应,来构建胺基季碳氧化吲哚. 发现在金鸡纳碱衍生的叔胺-酚羟基双功能催化剂C5的作用下,10种不同取代的N-Boc靛红亚胺与硝基甲烷的反应均能顺利进行,以66%~91%的对映选择性得到目标产物,产物的绝对构型通过X-ray单晶衍射加以确定. 硝基乙烷和硝基丙烷也能高对映选择性地参与反应,但非对映选择性不佳.

本文引用格式

王雨卉 , 曹中艳 , 牛艳霏 , 赵小莉 , 周剑 . 高对映选择性的有机催化的硝基烷烃对N-Boc靛红亚胺的不对称aza-Henry反应[J]. 化学学报, 2014 , 72(7) : 867 -872 . DOI: 10.6023/A14040335

Abstract

We report a highly enantioselective aza-Henry reaction of nitroalkanes with N-Boc isatin ketimines 1. A cinchona alkaloid derived bifunctional catalyst C5, featuring a C6 hydroxy group, is identified as a powerful catalyst for this reaction. Accordingly, under an atmosphere of nitrogen, to a 10 mL Schlenk tube are added C5 (0.03 mmol, 14.6 mg), MS5Å (120 mg), nitromethane (4.5 mmol, 244 μL) and 3.0 mL of toluene successively, followed by the addition of N-Boc isatin ketimine 1 (0.3 mmol). The resulting mixture is stirred at 20 ℃ till the full consumption of the ketimine, monitored by TLC analysis. After the solvent is removed under reduced pressure, the residue is directly subjected to column chromatography, using an eluent of dichloromethane and acetone (10:1, V/V), to afford the desired product 3. Under this condition, a variety of differently substituted N-Boc isatin ketimines work well with MeNO2 to provide the Mannich adduct in up to 91% ee. A 1.0 mmol scale reaction of 1a and MeNO2 is examined, giving adduct 3a in 87% yield and 90% ee. Unfortunately, unprotected isatin derived N-Boc isatin ketimine 1j provides the corresponding product in only 66% ee, suggesting the importance of the N-protecting group of isatin in securing high enantioselectivity. Nitroethane and nitropropane are also viable for this reaction, affording the corresponding products in high yield and excellent ee value, albeit with moderate diastereoselectivity.

参考文献

[1] For reviews: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381;
(b) Shen, K.; Liu, X.-H.; Lin, L.-L.; Feng, X.-M. Chem. Sci. 2012, 3, 327;
(c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247;
(d) Liu, Y.-L.; Zhu, F.; Wang, C.-H.; Zhou, J. Chin. J. Org. Chem. 2013, 33, 1595 (刘运林, 朱锋, 王翠红, 周剑, 有机化学, 2013, 33, 1595);
(e) Chauhan, P.; Chimni, S. S. Tetrahedron: Asymmetry 2013, 24, 343;
(f) Cao, Z.-Y.; Wang, Y.-H.; Zeng, X.-P.; Zhou, J. Tetrahedron Lett. 2014, 55, 2571;
(g) Zhao, L.-Q.; Zhou, B.; Li, Y.-Q. Chin. J. Org. Chem. 2011, 31, 553. (赵丽琴, 周波, 李毅群, 有机化学, 2011, 31, 553.)
[2] (a) Anthoni, U.; Chevolot, L.; Larsen, C.; Nielsen, P. H.; Christophersen, C. J. Org. Chem. 1987, 52, 4709;
(b) Baran, P. S.; Shenvi, R. A. J. Am. Chem. Soc. 2006, 128, 14028.
[3] (a) Kitamura, H.; Kato, A.; Esaki, T. Eur. J. Pharmacol. 2001, 418, 225;
(b) Ochi, M.; Kawasaki, K.; Kataoka, H.; Uchio, Y.; Nishi, H. Biochem. Biophys. Res. Commun. 2001, 283, 1118.
[4] (a) Bernard, K.; Bogliolo, S.; Ehrenfeld, J. Br. J. Pharmacol. 2005, 144, 1037;
(b) Serradeil-Le Gal, C.; Sylvain, D.; Brossard, G.; Manning, M.; Simiand, J.; Gaillard, R.; Griebel, G.; Guillon, G. Stress 2003, 6, 199.
[5] Horoszok, L.; Leung, C.; Tomaszewski, M.; Walpole, C. PCT Int. Appl. 2007, WO2007091946.
[6] (a) Chatterjee, A. K.; Yeung, B. K. S. Curr. Top. Med. Chem. 2012, 12, 473;
(b) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; González-Páez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana T. T. Science 2010, 329, 1175.
[7] Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902.
[8] Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Kündig, E. P. Chem. Commun. 2008, 4040.
[9] (a) Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Lett. 2009, 11, 3874;
(b) Bui, T.; Borregan, M.; Barbas Ⅲ, C. F. J. Org. Chem. 2009, 74, 8935;
(c) Yang, Z.; Wang, Z.; Bai, S.; Shen, K.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Chem. Eur. J. 2010, 16, 6632;
(d) Mouri, S.; Chen, Z.-H; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255;
(e) Shen, K.; Liu, X.-H; Wang, G.; Lin, L.; Feng, X.-M. Angew. Chem., Int. Ed. 2011, 50, 4684;
(f) Zhang, T.; Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Tetrahedron: Asymmetry 2010, 21, 2800;
(g) Jia, L.-N.; Huang, J.; Peng, L.; Wang, L.-L.; Bai, J.-F.; Tian, F.; He, G.-Y.; Xu, X.-Y.; Wang, L.-X. Org. Biomol. Chem. 2012, 10, 236;
(h) Companyó, X.; Valero, G.; Pineda, O.; Calvet, T.; Font-Bardía, M.; Moyano, A.; Rios, R. Org. Biomol. Chem. 2012, 10, 431.
[10] (a) Liu, Y.-L.; Zhou, F.; Cao, J.-J.; Ji, C.-B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847;
(b) Guo, Q.-X.; Liu, Y.-W.; Li, X.-C.; Zhong, L.-Z.; Peng, Y.-G. J. Org. Chem. 2012, 77, 3589;
(c) Liu, Z.; Feng, X.; Du, H. Org. Lett. 2012, 14, 3154;
(d) Zhang, B.; Feng, P.; Sun, L.-H.; Cui, Y.; Ye, S.; Jiao, N. Chem. Eur. J. 2012, 18, 9198.
[11] (a) Zhang, H.; Zhang, S.-J.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Beilstein J. Org. Chem. 2012, 8, 1241;
(b) Sun, X.-H.; Peng, J.; Zhang, S.-Y.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Acta Chim. Sinica 2012, 70, 1682.(孙峋皓, 彭景, 张叔阳, 周清清, 董琳, 陈应春, 化学学报, 2012, 70, 1682.)
[12] Ren, L.; Lian, X.-L.; Gong, L.-Z. Chem. Eur. J. 2013, 19, 3315.
[13] Cui, B.-D.; Han, W.-Y.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2013, 78, 8833.
[14] (a) Liu, Y.-L.; Wang, X.; Zhao, Y.-L.; Zhu, F.; Zeng, X.-P.; Chen, L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J. Angew. Chem., Int. Ed. 2013,52,13735;
(b) Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K.-L. J. Am. Chem. Soc. 2013, 135, 8197;
(c) Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994;
(d) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176;
(e) Ding, M.; Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J. Chem. Sci. 2011, 2, 2035;
(f) Cao, Z.-Y.; Zhou, F.; Yu, Y.-H.; Zhou, J. Org. Lett. 2013, 15, 42;
(g) Cao, Z.-Y.; Zhang, Y.; Ji, C.-B.; Zhou, J. Org. Lett. 2011, 13, 6398;
(h) Liu, Y.-L.; Zhou, J. Chem. Commun. 2012, 48, 1919;
(i) Yu, J.-S.; Zhou, F.; Liu, Y.-L.; Zhou, J. Beilstein J. Org. Chem. 2012, 8, 1360;
(j) Ding, M.; Zhou, F.; Qian, Z.-Q.; Zhou, J. Org. Biomol. Chem. 2010, 8, 2912.
[15] (a) Zhou, F.; Zeng, X.-P.; Wang, C.; Zhao, X.-L.; Zhou, J. Chem. Commun. 2013, 49, 2022;
(b) Zhou, F.; Ding, M.; Liu, Y.-L.; Wang, C.-H.; Ji, C.-B.; Zhang, Y.-Y.; Zhou, J. Adv. Synth. Catal. 2011, 353, 2945;
(c) Qian, Z.-Q.; Zhou, F.; Du, T.-P.; Wang, B.-L.; Ding, M.; Zhao, X.-L.; Zhou, J. Chem. Commun. 2009, 6753;
(d) Zhou, F.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2012, 10, 3178.
[16] (a) Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Org. Lett. 2012, 14, 2512;
(b) Feng, J.; Yan, W.; Wang, D.; Li, P.; Sun, Q.; Wang, R. Chem. Commun. 2012, 48, 8003;
(c) Hara, N.; Nakamura, S.; Sano, M.; Tamura, R.; Funahashi, Y.; Shibata, N. Chem. Eur. J. 2012, 18, 9276;
(d) Liu, Y.-L.; Zhou, J. Chem. Commun. 2013, 49, 4421;
(e) Wang, D.; Liang, J.; Feng, J.; Wang, K.; Sun, Q.; Zhao, L.; Li, D.; Yan, W.; Wang, R. Adv. Synth. Catal. 2013, 355, 548;
(f) Hu, F.-L.; Wei, Y.; Shi, M.; Pindi, S.; Li, G.-G. Org. Biomol. Chem. 2013, 11, 1921;
(g) Nakamura, S.; Hyodo, K.; Nakamura, M.; Nakane, D.; Masuda, H. Chem. Eur. J. 2013, 19, 7304;
(h) Chen, X.; Chen, H.; Ji, X.; Jiang, H.; Yao, Z.-J.; Liu, H. Org. Lett. 2013, 15, 1846;
(i) Takizawa, S.; Rémond, E.; Arteaga, F. A.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. Chem. Commun. 2013, 49, 8392;
(j) Wang, X.-B.; Li, T.-Z.; Sha, F.; Wu, X.-Y. Eur. J. Org. Chem. 2014, 2014, 739; (k) Rajasekaran, T.; Karthik, G.; Sridhar, B.; Kumar, S. K.; Reddy, B. V. S. Eur. J. Org. Chem. 2014, 2014, 2221; (l) Mei, L.-Y.; Tang, X.-Y.; Shi, M. Org. Biomol. Chem. 2014, 12, 1149; (m) George, J.; Sridhar, B.; Reddy, B. V. S. Org. Biomol. Chem. 2014, 12, 1595.
[17] For a recent review: (a) Noble, A.; Anderson, J. C. Chem. Rev. 2013, 113, 2887; For selected recent examples:
(b) Handa, S.; Gnanadesikan, V.; Matsunga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925;
(c) Robak, M. T.; Trincado, M.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 15110;
(d) Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.; Xue, Z.-Y.; Teng, H.-L. J. Am. Chem. Soc. 2008, 130, 8606;
(e) Palomo, C.; Oiarbide, M.; Laso, A.; López, R. J. Am. Chem. Soc. 2005, 127, 17622;
(f) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 7975;
(g) Wei, Y.; He, W.; Liu, Y.; Liu, P.; Zhang, S. Org. Lett. 2012, 14, 704;
(h) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466;
(i) Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 10878;
(j) Jia, Z.-X.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2011, 13, 832; (k) Zhou, H.; Peng, D.; Qin, B.; Hou, Z.-R.; Liu, X.-H.; Feng, X.-M. J. Org. Chem. 2007, 72, 10302; (l) Wang, L.-W.; Tan, C.; Liu, X.-H.; Feng, X.-M. Synlett 2008, 2075.
[18] (a) Tan, C.; Liu, X.; Wang, L.; Wang, J.; Feng, X. Org. Lett. 2008, 10, 5305;
(b) Liu, X.; Lin, L.; Feng, X. Org. Chem. Front. 2014, 1, 298;
(c) Qin, B.; Xiao, X.; Liu, X.-H.; Wen, Y.-H.; Feng, X.-M. J. Org. Chem. 2007, 72, 9323;
(d) Xie, H.; Zhang, Y.; Zhang, S.; Chen, X.; Wang, W. Angew. Chem., Int. Ed. 2011, 50, 11773;
(e) Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. J. Am. Chem. Soc. 2013, 135, 16348.
[19] (a) Wang, Y.-H.; Liu, Y.-L.; Cao, Z.-Y.; Zhou, J. Asian J. Org. Chem. 2014, 3, 429; During the review process of this manuscript, Arai and coworkers also reported a highly enantioslective chiral Ni(II) complex catalyzed version of this reaction, see:
(b) Arai, T.; Matsumura, E.; Masu, H. Org. Lett. 2014, 16, 2768; for the enantioselective addition of MeNO2 to isatins, see:
(c) Liu, L.; Zhang, S.; Xue, F.; Lou, G.; Zhang, H.; Ma, S.; Duan, W.; Wang, W. Chem. Eur. J. 2011, 17, 7791.

文章导航

/