研究论文

聚丙烯腈基活性炭铜掺杂材料的制备及其电容性能

  • 马占玲 ,
  • 宋艳芳 ,
  • 夏永姚 ,
  • 何军坡
展开
  • a 聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433;
    b 上海市分子催化和功能材料重点实验室 复旦大学化学系 上海 200433

收稿日期: 2014-04-16

  网络出版日期: 2014-05-30

基金资助

项目受国家科技部“973”,“863”基金(Nos. 2008AA032102,2011CB605701)资助.

Preparation and Capacitance of Copper-Doped Activated Carbon From Polyacrylonitrile (PAN) Precursor

  • Ma Zhanling ,
  • Song Yanfang ,
  • Xia Yongyao ,
  • He Junpo
Expand
  • a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433;
    b Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433

Received date: 2014-04-16

  Online published: 2014-05-30

Supported by

Project supported by the Ministry of Science and Technology of China (Nos. 2008AA032102, 2011CB605701).

摘要

聚丙烯腈是一类常见的活性炭前驱体. 本研究以聚丙烯腈为原料,利用化学络合方法来制备铜金属掺杂活性炭. 制备主要分为3步:(1)聚丙烯腈中的腈基被羟胺官能化生成含有大量羟基和氨基的淡黄色肟基化产物;(2)铜离子和肟基复合,生成墨绿色的复合物;(3)复合物在高温下炭化生成铜掺杂活性炭. 该方法并没有直接对活性炭进行掺杂,而是通过对原材料聚丙烯腈进行官能化反应,使之与水溶液中铜离子发生高效络合过程,确保了活性炭原材料掺杂金属的有效性. 将铜掺杂聚丙烯腈原料进行化学活化,得到铜掺杂活性炭. 对其进行循环伏安和充放电测试,发现掺杂金属后电容值由原来的208.3 F/g增加至289.7 F/g (0.5 A/g下测试),电容值约提升了40%. 然而掺杂铜以后,其循环性能有一定程度的下降,这可能是因为掺杂的铜发生了不可逆氧化还原反应,导致其相对循环稳定性下降.

本文引用格式

马占玲 , 宋艳芳 , 夏永姚 , 何军坡 . 聚丙烯腈基活性炭铜掺杂材料的制备及其电容性能[J]. 化学学报, 2014 , 72(8) : 927 -934 . DOI: 10.6023/A14040286

Abstract

Polyacrylonitrile (PAN) is a widely used precursor for activated carbon using KOH as the activation agent. In the present work, we prepared activated carbon with high BET surface (2241 m2/g) by optimizing the activation temperature and the dosage of KOH. On this basis, we obtained PAN-based activated carbon doped with copper. The preparation is through a three-step process: (1) the nucleophilic reaction between nitrile groups and hydroxylamine (NH2OH), introducing multi amino and oximido groups in PAN; (2) complexation of Cu2+ with oximido groups on modified PAN, resulting in a dark green colored complex; (3) carbonization of the complex in the presence of KOH at high temperature. The present method of doping-in-precursor may provides more homogeneous blending of metal in carbon matrix than simple mixing of activated carbon and copper. The copper-doped activated carbon was characterized by XPS, FT-IR and SEM. The doped copper undergoes the Faradic reactions to produce pseudo-capacitance, thus improving the specific capacitance of activated carbon electrodes from 208.3 F/g to 289.7 F/g (0.5 A/g). Nevertheless, the cycle stability of copper-doped activated carbon was lower than that of pure activated carbon after several recharge cycles. This was probably caused by the irreversible Faradic reaction of doped copper.

参考文献

[1] Wang, Y. X.; Wang, C. G.; Wu, J. W.; Jing, M. J. Appl. Polym. Sci. 2007, 106, 1787.

[2] Tang, C. B.; Tracz, A.; Kruk, M.; Zhang, R.; Smilgies, D. M.; Matyjaszewski, K.; Kowalewski, T. J. Am. Chem. Soc. 2005, 127, 6918.

[3] Stefik, M.; Sai, H.; Sauer, K.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Macromolecules 2009, 42, 6682.

[4] Kowalewski, T.; Tsarevsky, N. V.; Matyjaszewski, K. J. Am. Chem. Soc. 2002, 124, 10632.

[5] Zhong, M. J.; Kim, E. K.; McGann, J. P.; Chun, S. E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. J. Am. Chem. Soc. 2012, 134, 14846.

[6] Zheng, L. P.; Wang, X. Y.; An, H. F.; Chen, Q. Q.; Liu, L.; Bai, L. Acta Chim. Sinica, 2010, 68, 2516. (郑丽萍, 王先友, 安红芳, 陈权启, 刘黎, 白俐, 化学学报, 2006, 68, 2516.)

[7] Zhou, C. F.; Liu, T.; Wang, T.; Kumar, S. Polymer 2006, 47, 5831.

[8] Jagannathan, S.; Liu, T.; Kumar, S. Compos. Sci. Technol. 2010, 70, 593.

[9] Frackowiak, E.; Lota, G.; Machnikowski, J.; Vix-Guterl, C.; Béguin, F. Electrochim. Acta 2006, 51, 2209.

[10] Gouérec, P.; Talbi, H.; Miousse, D.; Tran-Van, F.; Dao, L. H.; Lee, K. H. J. Electrochem. Soc. 2001, 148, A94.

[11] Ra, E. J.; Raymundo-Piñero, E.; Lee, Y. H.; Béguin, F. Carbon 2009, 47, 2984.

[12] Yang, X. Q.; Wu, D. C.; Chen, X. M.; Fu, R. W. J. Phys. Chem. C 2010, 114, 8581.

[13] Xu, B.; Wu, F.; Chen, R. J.; Cao, G. P.; Chen, S.; Yang, Y. S. J. Power Sources 2010, 195, 2118.

[14] Kim, B. H.; Bui, N. N.; Yang, K. S.; dela Cruz, M. E.; Ferraris, J. P. Bull. Korean Chem. Soc. 2009, 30, 1967.

[15] Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.

[16] Mahon, P. J.; Drummond, C. J. Aust. J. Chem. 2001, 54, 473.

[17] Nishino, A. J. Power Sources 1996, 60, 137.

[18] Nomoto, S.; Nakata, H.; Yoshika, K.; Yoshida, A.; Yoneda, H. J. Power Sources 2001, 97-98, 807.

[19] Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11.

[20] Frackowiak, E.; Béguin, F. Carbon 2001, 39, 937.

[21] Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Adv. Mater. 2011, 23, 4828.

[22] Inagaki, M.; Konno, H.; Tanaike, O. J. Power Sources 2010, 195, 7880.

[23] Lu, W.; Yushin, G. Nano Energy 2012, 1, 552.

[24] Noked, M.; Soffer, A.; Aurbach, D. J. Solid State Electrochem. 2011, 15, 1563.

[25] Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanoscale 2013, 5, 72.

[26] Zhang, J. R.; Jiang, D. C.; Chen, B.; Zhu, J. J.; Jiang, L. P.; Fang, H. Q. J. Electrochem. Soc. 2001, 148, A1362.

[27] Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699.

[28] Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J. J. Power Sources 2001, 101, 126.

[29] Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.

[30] Yan, L.; Kong, H.; Li, Z. J. Acta Chim. Sinica 2013, 71, 822. (严琳, 孔惠, 李在均, 化学学报, 2013, 71, 822.)

[31] Zheng, M. B.; Ling, Z. X.; Liao, S. T.; Yang, Z. J.; Ji, G. B.; Cao, J. M.; Tao, J. Acta Chim. Sinica 2009, 67, 1069. (郑明波, 凌宗欣, 廖书田, 杨振江, 姬广斌, 曹洁明, 陶杰, 化学学报, 2009, 67, 1069.)

[32] Li, Y. H.; Chang, S.; Liu, X. L.; Huang, J. C.; Yin, J. L.; Wang, G. L.; Cao, D. X. Electrochim. Acta 2012, 85, 393.

[33] Patake, V. D.; Joshi, S. S.; Lokhande, C. D.; Joo, O. S. Mater. Chem. Phys. 2009, 114, 6.

[34] Dubal, D. P.; Gund, G. S.; Lokhande, C. D.; Holze, R. Mater. Res. Bull. 2013, 48, 923.

[35] Zhang, H. X.; Feng, J.; Zhang, M. L. Mater. Res. Bull. 2008, 43, 3221.

[36] Pendashteh, A.; Rahmanifar, M. S.; Mousavi, M. F. Ultrason. Sonochem. 2014, 21, 643.

[37] Zhang, H. X.; Zhang, M. L. Mater. Chem. Phys. 2008, 108, 184.

[38] Dubal, D. P.; Dhawale, D. S.; Salunkhe, R. R.; Jamdade, V. S.; Lokhande, C. D. J. Alloys Compd. 2010, 492, 26.

[39] Wang, G. L.; Huang, J. C.; Chen, S. L.; Gao, Y. Y.; Cao, D. X. J. Power Sources 2011, 196, 5756.

[40] Endut, Z.; Hamdi, M.; Basirun, W. J. Thin Solid Films 2013, 528, 213.

[41] Zhang, L. L.; Candelaria, S. L.; Tian, J. J.; Li, Y. W.; Huang, Y. X.; Cao, G. Z. J. Power Sources 2013, 236, 215.

[42] Meng, Q. H.; Liu, L.; Song, H. H. J. Appl. Electrochem. 2006, 36, 63.

[43] Meng, Q. H.; Liu, L.; Cao, G. P.; Yang, Y. S. J. Funct. Mater. 2005, 36, 1170. (孟庆函, 刘玲, 曹高萍, 杨裕生, 功能材料, 2005, 36, 1170.)

[44] Sun, G. H.; Li, K. X.; Sun, C. G.; Liu, Y.; He, H. W. Electrochim. Acta 2010, 55, 2667.

[45] Ma, Y. F.; Chen, L. J.; Xing, B. L.; Xu, B.; Huang, X. X.; Zhang, C. X. J. China Coal Soc. 2012, 37, 472. (马亚芬, 谌伦建, 邢宝林, 徐冰, 黄兴许, 张传祥, 煤炭学报, 2012, 37, 472.)

[46] Kim, D. W.; Rhee, K. Y.; Park, S. J. J. Alloys Compd. 2012, 530, 6.

[47] Takamura, T.; Sato, Y.; Sato, Y. J. Power Sources 2011, 196, 5774.

[48] Lin, W. P.; Lu, Y.; Zeng, H. M. J. Appl. Polym. Sci. 1993, 47, 45.

[49] Dong, Y. C.; Han, Z. B.; Liu, C. Y.; Du, F. Sci. Total Environ. 2010, 408, 2245.

[50] de Santa Maria, L.; Amorim, M.; Aguiar, M.; Guimarães, P.; Costa, M.; de Aguiar, A.; Rezende, P.; de Carvalho, M.; Barbosa, F. G.; Andrade, J. M.; Ribeiro, R. React. Funct. Polym. 2001, 49, 133.

[51] Zhang, L. F.; Luo, J.; Menkhaus, T. J.; Varadaraju, H.; Sun, Y. Y.; Fong, H. J. Membr. Sci. 2011, 369, 499.

[52] Im, S. S.; Lee, J. S.; Kang, E. Y. J. Appl. Polym. Sci. 1992, 45, 827.

[53] Huang, C. C.; Su, Y. J. J. Hazard. Mater. 2010, 175, 477.

[54] Bilba, N.; Bilba, D.; Moroi, G. J. Appl. Polym. Sci. 2004, 92, 3730.

[55] Horzum, N.; Shahwan, T.; Parlak, O.; Demir, M. M. Chem. Eng. J. 2012, 213, 41.

[56] Lv, Y. Y.; Zhang, F.; Dou, Y. Q.; Zhai, Y. P.; Wang, J. X.; Liu, H. J.; Xia, Y. Y.; Tu, B.; Zhao, D. Y. J. Mater. Chem. 2012, 22, 93.

[57] Xue, C. F.; Lv, Y. Y.; Zhang, F.; Wu, L. M.; Zhao, D. Y. J. Mater. Chem. 2012, 22, 1547.

[58] Zhou, S. Y.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Peng, W. J. Chin. J. Power Sources 2008, 32, 87. (周邵云, 李新海, 王志兴, 郭华军, 彭文杰, 电源技术, 2008, 32, 87.)

[59] Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.; Wang, G. L.; Cao, D. X. Acta Phys.-Chim. Sin. 2011, 27, 615. (于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学, 物理化学学报, 2011, 27, 615.)

[60] Wei, H.; Sun, J. J.; Guo, L.; Li, X.; Chen, G. N. Chem. Commun. 2009, 20, 2842. Song, Y. F.; Zhou, D. D.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. New J. Chem. 2013, 37, 1768.
文章导航

/