研究论文

SpinPHOX/Ir(I)催化的2-羟甲基-3-芳基丙烯酸的不对称氢化

  • 刘旭 ,
  • 韩召斌 ,
  • 王正 ,
  • 丁奎岭
展开
  • 中国科学院上海有机化学研究所 金属有机国家重点实验室 上海 200032

收稿日期: 2014-04-23

  网络出版日期: 2014-05-29

基金资助

项目受国家重点基础研究发展计划(973 计划)(No.2010CB833300)、国家自然科学基金(21121062和21232009)、中科院及上海市科委资助.

SpinPHOX/Ir(I) Catalyzed Asymmetric Hydrogenation of (E)-2-(hydroxymethyl)-3-Arylacrylic Acids

  • Liu Xu ,
  • Han Zhaobin ,
  • Wang Zheng ,
  • Ding Kuiling
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2014-04-23

  Online published: 2014-05-29

Supported by

Project supported by the Major Basic Research Development Program of China (No. 2010CB833300), the National Natural Science Foundation of China (Nos. 21121062 and 21232009), the Chinese Academy of Sciences, and the Science and Technology Commission of Shanghai Municipality.

摘要

光学活性的2-羟甲基-3-芳基丙酸类化合物是许多手性药物的关键合成中间体,但到目前为止其不对称合成方法大多存在对映选择性不高及/或底物范围有限等问题. 报道了手性SpinPHOX/Ir(I)络合物在一系列2-羟甲基-3-芳基丙烯酸的不对称氢化中表现出优良的催化性能,取得完全的底物转化和良好到优秀的对映选择性(高达95% ee). 对于同一2-羟甲基-3-芳基丙烯酸底物的不对称氢化,使用中心手性相同但螺环骨架上的轴手性相反的催化剂分别以优良的对映选择性获得构型相反的产物,从而为光学活性2-羟甲基-3-芳基丙酸及相关手性药物的不对称合成提供了一条简便高效的途径.

本文引用格式

刘旭 , 韩召斌 , 王正 , 丁奎岭 . SpinPHOX/Ir(I)催化的2-羟甲基-3-芳基丙烯酸的不对称氢化[J]. 化学学报, 2014 , 72(7) : 849 -855 . DOI: 10.6023/A14040314

Abstract

Optically active 3-aryl-2-hydroxymethylpropionoic acids are highly useful chiral building blocks for the preparation of some drugs, but so far their asymmetric syntheses are still plagued by modest enantioselectivity and/or limited substrate scope. In the present study, the SpinPHOX/Ir(I) complexes (S,S)-1c and (R,S)-1e have been demonstrated to be highly effective for the asymmetric hydrogenation of (E)-2-(hydroxymethyl)-3-arylacrylic acids, affording the corresponding optically active 3-aryl-2-hydroxymethylpropionoic acids in good to excellent enantiopurities (ee up to 95%). Catalyst screening and reaction optimization with (E)-2-(hydroxymethyl)-3-phenylacrylic acid 2a as the model substrate, revealed that the asymmetric hydrogenation was best conducted in dichloromethane at r.t. under 10 atm of hydrogen with (S,S)-1c as the catalyst, and the presence of 1 equiv. of a suitable organic base (such as triethylamine) was essential for full substrate conversion and excellent product enantioselectivity (94% ee). Evaluation of the substrate scope of the protocol was performed using various 2-hydroxymethyl cinnamic acid derivatives 2a2n with various substituents on the phenyl group. Full conversions and good to high ee values were obtained in most cases, irrespective of the electron-withdrawing or -donating nature of the substituent. Using complex (R,S)-1e as the catalyst under a slightly modified reaction conditions (50 atm H2, 40 ℃), several substrates were hydrogenated in excellent ee values but with the sense of chiral induction opposite to those obtained by using (S,S)-1c. The reaction can be readily scaled up to gram-scale with retention of enantioselectivity. Among the optically enriched hydrogenation products obtained from this procedure, (S)-3a, (R)-3a and (-)-3n can be used as chiral building blocks for the asymmetric synthesis of pharmaceuticals Alvimopan, Ecadotril, and Fasidotril, respectively. Using this protocol, various (E)-2-(hydroxymethyl)-3-arylacrylic acids could be readily hydrogenated in high optical purities, thus providing a facile access to both enantiomers of the chiral 3-aryl-2-hydroxymethylpropionoic acids as well as the relevant chiral drugs.

参考文献

[1] Delaney, C. P.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discov. 2008, 7, 727.
[2] Monteil, T.; Danvy, D.; Sihel, M.; Leroux, R.; Plaquevent, J.-C. Mini-Rev. Med. Chem. 2002, 2, 209.
[3] Bralet, J.; Marie, C.; Gros, C.; Schwartz, J. C.; Lecomte, J. M. Cardiovasc. Drug Rev. 2000, 18, 1.
[4] (a) Li, L.; Tian, Q.; Wei, W.; Zhu, H.; Yang, S.; Zhou, X.; Qu, H.; Wu, M. CN1827598A, 2006 [Chem. Abstr. 2006, 145, 377205];
(b) Nohira, H.; Suzuki, T.; Hamada, T.; Izawa, K. EP906900A1, 1999 [Chem. Abstr. 1999, 130, 267147];
(c) Suzuki, T.; Hamada, T.; Izawa, K. US6242635, 1999 [Chem. Abstr. 1999, 130, 267216].
[5] (a) Guazzelli, G.; De Grazia, S.; Collins, K. D.; Matsubara, H.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 7214;
(b) Collins, K. D.; Oliveira, J. M.; Guazzelli, G.; Sautier, B.; De Grazia, S.; Matsubara, H.; Helliwell, M.; Procter, D. J. Chem. Eur. J. 2010, 16, 10240.
[6] Lightburn, T. E.; De Paolis, O. A.; Cheng, K. H.; Tan, K. L. Org. Lett. 2011, 13, 2686.
[7] Boeckman, R. K.; Miller, J. R. Org. Lett. 2009, 11, 4544.
[8] For comprehensive reviews, see: (a) Blaser, H. U. Adv. Synth. Catal. 2002, 344, 17;
(b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008;
(c) Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103;
(d) Lennon, I. C.; Moran, P. H. Curr. Opin. Drug Discovery Dev. 2003, 6, 855;
(e) Chen, B.; Dingerdissen, U.; Krauter, J. G. E.; Rotgerink, H.; Mobus, K.; Ostgard, D. J.; Panster, P.; Riermeier, T. H.; Seebald, S.; Tacke, T.; Trauthwein, H. Appl. Catal., A 2005, 280, 17;
(f) Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Acc. Chem. Res. 2007, 40, 1291;
(g) Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Acc. Chem. Res. 2007, 40, 1385;
(h) Zhang, W. C.; Chi, Y. X.; Zhang, X. M. Acc. Chem. Res. 2007, 40, 1278;
(i) Palmer, A. M.; Zanotti-Gerosa, A. Curr. Opin. Drug Discovery Dev. 2010, 13, 698;
(j) Ager, D. J.; de Vries, A. H. M.; de Vries, J. G. Chem. Soc. Rev. 2012, 41, 3340;
(k) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427; (谢建华, 周其林, 化学学报, 2012, 70, 1427.);
(l) Chen, Q. A.; Ye, Z. S.; Duan, Y.; Zhou, Y. G. Chem. Soc. Rev. 2013, 42, 497;
(m) Etayo, P.; Vidal-Ferran, A. Chem. Soc. Rev. 2013, 42, 728;
(n) Wang, D.; Hou, C.-J.; Chen, L.-F.; Liu, X.-N.; An, Q.-D.; Hu, X.-P. Chin. J. Org. Chem. 2013, 33, 1355; (王东, 侯传金, 陈丽凤, 刘小宁, 安庆大, 胡向平, 有机化学, 2013, 33, 1355.)
[9] Ohshima, S.; Matsumoto, T.; Aoki, Y.; Hirose, T.; Miyashita, A.; Nohira, H. Enantiomer 1998, 3, 191.
[10] Binay, P.; Henry, J. C.; Vidal, V.; Genet, J. P.; Dellis, P. FR2772027A1, 1999 [Chem. Abstr. 1999, 131, 170171].
[11] Hamada, T.; Izawa, K. JP2000229907A, 2000 [Chem. Abstr. 2000, 133, 177020].
[12] (a) Shimizu, H.; Saito, T.; Kumobayashi, H. Adv. Synth. Catal. 2003, 345, 185;
(b) Jeulin, S.; Ayad, T.; Ratovelomanana-Vidal, V.; Genet, J.-P. Adv. Synth. Catal. 2007, 349, 1592 ;
(c) Holz, J.; Schaeffner, B.; Spannenberg, A.; Boerner, A.; Zayas, O. Adv. Synth. Catal. 2008, 350, 2533;
(d) Pautigny, C.; Jeulin, S.; Ayad, T.; Genet, J.-P.; Ratovelomanana-Vidal, V.; Zhang, Z. Adv. Synth. Catal. 2008, 350, 2525;
(e) Wassenaar, J.; Reek, J. N. H.; Kuil, M. Adv. Synth. Catal. 2008, 350, 1610;
(f) Breuil, P.-A. R.; Patureau, F. W.; Reek, J. N. H. Angew. Chem. Int. Ed. 2009, 48, 2162;
(g) Meeuwissen, J.; Kuil, M.; van der Burg, A. M.; Sandee, A. J.; Reek, J. N. H. Chem. Eur. J. 2009, 15, 10272;
(h) Qiu, M.; Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Deng, J.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 20, 210;
(i) Fernandez-Perez, H.; Donald, S. M. A.; Munslow, I. J.; Benet-Buchholz, J.; Maseras, F.; Vidal-Ferran, A. Chem. Eur. J. 2010, 16, 6495;
(j) Robert, T.; Schmalz, H.-G.; Abiri, Z.; Sandee, A. J.; Reek, J. N. H. Tetrahedron: Asymmetry 2010, 21, 2671;
(k) Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A. L.; Reek, J. N. H. Chem. Eur. J. 2010, 16, 6509;
(l) Zupancic, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 3022;
(m) Etayo, P.; Nunnez-Rico, J. L.; Vidal-Ferran, A. Organometallics 2011, 30, 6718;
(n) Bellini, R.; Reek, J. N. H. Eur. J. Inorg. Chem. 2012, 2012, 4684;
(o) Nunez-Rico, J. L.; Etayo, P.; Fernandez-Perez, H.; Vidal-Ferran, A. Adv. Synth. Catal. 2012, 354, 3025;
(p) Patureau, F. W.; Worch, C.; Siegler, M. A.; Spek, A. L.; Bolm, C.; Reek, J. N. H. Adv. Synth. Catal. 2012, 354, 59;
(q) Pignataro, L.; Bovio, C.; Civera, M.; Gennari, C.; Piarulli, U. Chem. Eur. J. 2012, 18, 10368.
[13] For an elegant review, see: Khumsubdee, S.; Burgess, K. ACS Catal. 2013, 3, 237.
[14] For examples, see: (a) Liu, D.; Tang, W. J.; Zhang, X. Org. Lett. 2004, 6, 513;
(b) Zhou, J. G.; Ogle, J. W.; Fan, Y. B.; Banphavichit, V.; Zhu, Y.; Burgess, K. Chem. Eur. J. 2007, 13, 7162;
(c) Li, S.; Zhu, S. F.; Zhang, C. M.; Song, S.; Zhou, Q. L. J. Am. Chem. Soc. 2008, 130, 8584;
(d) Lu, S. M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 8920;
(e) Lu, W. J.; Chen, Y. W.; Hou, X. L. Angew. Chem., Int. Ed. 2008, 47, 10133;
(f) Li, S.; Zhu, S. F.; Xie, J. H.; Song, S.; Zhang, C. M.; Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 1172;
(g) Tian, F. T.; Yao, D. M.; Liu, Y. Y.; Xie, F.; Zhang, W. B. Adv. Synth. Catal. 2010, 352, 1841;
(h) Woodmansee, D. H.; Muller, M. A.; Neuburger, M.; Pfaltz, A. Chem. Sci. 2010, 1, 72;
(i) Li, J. Q.; Quan, X.; Andersson, P. G. Chem. Eur. J. 2012, 18, 10609;
(j) Ma, B.; Deng, G.; Liu, J.; He, Y.; Fan, Q. Acta Chim. Sinica 2013, 71, 528; (马保德, 邓国军, 刘继, 何艳梅, 范青华, 化学学报, 2013, 71, 528.);
(k) Song, S.; Zhu, S. F.; Li, Y.; Zhou, Q. L. Org. Lett. 2013, 15, 3722;
(l) Song, S.; Zhu, S. F.; Pu, L. Y.; Zhou, Q. L. Angew. Chem., Int. Ed. 2013, 52, 6072. For reviews on Ir-catalyzed asymmetric hydrogenation, see:
(m) Cui, X. H.; Burgess, K. Chem. Rev. 2005, 105, 3272;
(n) Kallstrom, K.; Munslow, I.; Andersson, P. G. Chem. Eur. J. 2006, 12, 3194;
(o) Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402;
(p) Zhou, Y. G. Acc. Chem. Res. 2007, 40, 1357;
(q) Church, T. L.; Andersson, P. G. Coord. Chem. Rev. 2008, 252, 513;
(r) Woodmansee, D. H.; Pfaltz, A. Chem. Commun. 2011, 47, 7912;
(s) Cadu, A.; Andersson, P. G. J. Organomet. Chem. 2012, 714, 1. Chirally modified Pd-nanoparticles have also been shown efficient for catalytic hydrogenation of α,β-unsaturated carboxylic acids, for a recent example, see:
(t) Chen, C.-H.; Zhan, E. -S.; Li, Y.; Shen, W.-J. Acta Chim. Sinica 2013, 71, 1505; (陈春辉, 展恩胜, 李勇, 申文杰, 化学学报, 2013, 71, 1505.).
[15] For selected references on the spiro backbone based chiral ligands in asymmetric catalysis, see: (a) Chan, A. S. C.; Hu, W.; Pai, C.-C.; Lau, C.-P.; Jiang, Y.; Mi, A.; Yan, M.; Sun, J.; Lou, R.; Deng, J. J. Am. Chem. Soc. 1997, 119, 9570;
(b) Xie, J. H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581;
(c) Bajracharya, G. B.; Arai, M. A.; Koranne, P. S.; Suzuki, T.; Takizawa, S.; Sasai, H. Bull. Chem. Soc. Jpn. 2009, 82, 285;
(d) Ding, K.; Han, Z.; Wang, Z. Chem. Asian J. 2009, 4, 32;
(e) Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH, Weinheim, 2011.
[16] (a) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345;
(b) Zhang, Y.; Han, Z.; Li, F.; Ding, K.; Zhang, A. Chem. Commun. 2010, 46, 156;
(c) Shang, J.; Han, Z. B.; Li, Y.; Wang, Z.; Ding, K. Chem. Commun. 2012, 48, 5172;
(d) Wang, X. M.; Han, Z. B.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936;
(e) Wang, X. B.; Guo, P. H.; Wang, X. M.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2013, 355, 2900;
(f) Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2014, 53, 1978;
(g) Han, Z. B.; Wang, Z.; Zhang, X. M.; Ding, K. Chin. Sci. Bull. 2010, 55, 2840;
(h) Han, Z. B.; Wang, Z.; Zhang, X. M.; Ding, K. Tetrahedron Asymmetry 2010, 21, 1529;
(i) Han, Z. B.; Wang, Z.; Zhang, X. M.; Ding, K. Sci. China-Chem. 2010, 40, 950;
(j) Han, Z. B.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2011, 353, 1584.
[17] For reviews, see: (a) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581;
(b) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev. 2012, 41, 68;
(c) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
[18] (a) Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J. Org. Chem. 1998, 63, 7183;
(b) Mi, X. L.; Luo, S. Z.; Cheng, J. P. J. Org. Chem. 2005, 70, 2338;
(c) Zhang, T. Z.; Dai, L. X.; Hou, X. L. Tetrahedron: Asymmetry 2007, 18, 1990;
(d) Wang, X. M.; Meng, F. Y.; Wang, Y.; Han, Z. B.; Chen, Y. J.; Liu, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 9276.
[19] Monteil, T.; Danvy, D.; Plaquevent, J.-C.; Duhamel, L.; Duhamel, P.; Gros, C.; Schwartz, J.-C.; Lecomte, J.-M. Synth. Commun. 2001, 31, 211.
Ouyang, K.-B.; Xi, Z.-F. Acta Chim. Sinica 2013, 71, 13. (欧阳昆冰, 席振峰, 化学学报, 2013, 71, 13.)
文章导航

/