不对称双酸催化吲哚的Friedel-Crafts烷基化反应:抗衡阴离子调控对映选择性
收稿日期: 2014-04-02
网络出版日期: 2014-04-21
基金资助
项目受国家自然科学基金(Nos.21025208,21202170,21390400)和973 项目(No.2012CB821600)资助.
Counteranions of In(Ⅲ) Induced Reversal of Enantiocontrol in Friedel-Crafts Reaction of Indoles by Asymmetric Binary Acid Catalysis
Received date: 2014-04-02
Online published: 2014-04-21
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21025208, 21202170 and 21390400) and the 973 Program (No. 2012CB821600).
研究了双酸催化剂对吲哚和β,γ-不饱和α-酮酸酯的不对称Friedel-Crafts烷基化反应. 金属铟(Ⅲ)盐和手性磷酸组成的双酸催化体系可以高效、高选择性地催化吲哚与β,γ-不饱和α-酮酸酯的Friedel-Crafts烷基化反应. 简单改变铟(Ⅲ)盐的抗衡阴离子从F-到Br-,就能使产物的构型发生反转,并同时获得相应的高产率(最高达98%)和高对映选择性(最高大于99%)的1,4-加成产物.
关键词: 不对称催化; Friedel-Crafts烷基化反应; 手性反转; 双酸; 抗衡阴离子效应
吕健, 秦岩, 程津培, 罗三中 . 不对称双酸催化吲哚的Friedel-Crafts烷基化反应:抗衡阴离子调控对映选择性[J]. 化学学报, 2014 , 72(7) : 809 -814 . DOI: 10.6023/A14040246
Effective access to both enantiomers of any targeted products from a single chiral source of catalyst is highly desirable in asymmetric catalysis. Such dual stereocontrol has normally been encountered with structural modifications on the chiral ligands or catalysts skeletons. Recently, simple variations of reactions conditions such as solvents, temperature, additive and catalytic metal center, can lead to remarkable reversal of enantioselectivity with minimum structural modifications, thus providing a modular and synthetic appealing approach in asymmetric catalysis and synthesis. Previously, we have developed asymmetric binary acid catalysis wherein chiral Brønsted acids, mostly phosphoric acids, are utilized as dual acids and ligands in concert with metal catalysts, and this type of catalysis demonstrated tunable, even switchable stereoselectivity due to the combinatorial and synergistic features. In particular, simple swap of counteranion (from F- to Br-) of Indium(Ⅲ) salts led to complete switch of regioselectivity (1,2- vs. 1,4- addition) in the reaction of N-methyl indole 2a' and ketoester 3a with high enantioselectivity achieved for both regioisomers. In our further studies, we have found that when indole 2a was employed instead of N-methyl indole 2a', the counter anion effect on regioselectivity was not observed and both InF3 and InBr3 promoted exclusively 1,4-addition reactions. Interestingly, reversal of enantioselectivity of the 1,4-conjugate adduct was observed by simple swap of counter anions of indium(Ⅲ). The obtained optimal binary-acids combination, InF3(1c)2 and InBr3(1d)2 were found to be R- and S-selective catalyst for the 1,4-addition reactions, respectively. In the presence of asymmetric binary-acid catalysts (InX3/1, 2.5 mol%), indoles and β,γ-unsaturated α-ketoesters were stirred at -70 ℃ for 24 h to afford the various indole esters 4 in good to excellent yield (up to 98% yield ) and enantioselectivities (up to>99% ee).
[1] For recent reviews, see: (a) Noyori, R. Chem. Soc. Rev. 1989, 18, 187;
(b) Comprehensive Asymmetric Catalysis, Eds.: Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer, Berlin, 1999;
(c) Catalytic Asymmetric Synthesis, Ed.: Ojima, I., Wiley-VCH, New York, 2000.
(d) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari, G.; Giannini, E. Chem. Soc. Rev. 2003, 32, 115;
(e) Tanaka, T.; Hayashi, M. Synthesis 2008, 3361;
(f) Bartók, M. Chem. Rev. 2010, 110, 1663;
(g) Escorihuela, J.; Burguete, M. I.; Luis, S. V. Chem. Soc. Rev. 2013, 42, 5595.
[2] For selected examples for control with solvent: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545;
(b) Arseniyadis, S.; Valleix, A.; Wagner, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314;
(c) Arseniyadis, S.; Subhash, P. V.; Valleix, A.; Mathew, S. P.; Blackmond, D. G.; Wagner, A.; Mioskowski, C. J. Am. Chem. Soc. 2005, 127, 6138;
(d) Sohtome, Y.; Tanaka, S.; Takada, K.; Yamaguchi, T.; Nagasawa, K. Angew. Chem., Int. Ed. 2010, 49, 9254;
(e) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2004, 69, 1309.
[3] For selected examples for control with temperature: (a) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. Nature 1989, 341, 225;
(b) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am. Chem. Soc. 2004, 126, 2660;
(c) Casey, C. P.; Martins, S. C.; Fagan, M. A. J. Am. Chem. Soc. 2004, 126, 5585;
(d) Chan, V. S.; Chiu, M.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6021.
[4] For selected examples for control with additive, see: (a) Lutz, F.; Igarashi, T.; Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2005, 127, 12206;
(b) Lutz, F.; Igarashi, T.; Kinoshita, T.; Asahina, M.; Tsukiyama, K.; Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2008, 130, 2956;
(c) Blackmond, D. G.; Moran, A.; Hughes, M.; Armstrong, A. J. Am. Chem. Soc. 2010, 132, 7598;
(d) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 17934;
(e) Moteki, S. A.; Han, J.; Arimitsu, S.; Akakura, M.; Nakayama, K.; Maruoka, K. Angew. Chem., Int. Ed. 2012, 51, 1187;
(f) Feng, X.; Zhou, Z.; Zhou, R.; Zhou, Q.-Q.; Lin, L.; Chen, Y.-C. J. Am. Chem. Soc. 2012, 134, 19942.
[5] For selected examples of control with different center metals: (a) Spangler, K. Y.; Wolf, C. Org. Lett. 2009, 11, 4724;
(b) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 3779.
(c) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750;
(d) Liu, Y.; Shang, D.; Zhou, X.; Zhu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 180;
(e) Wang, Z.; Yang, Z.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2011, 50, 4928;
(f) Lu, G.; Yoshino, T.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2011, 50, 4382.
[6] (a) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496;
(b) Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706;
(c) Martínez- Castanñeda, A.; Rodríguesz-Solla, H.; Concellón, C.; del Amo, V. J. Org. Chem. 2012, 77, 10375.
[7] For recent reviews on asymmetric Friedel-Crafts reactions, see: (a) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190;
(b) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903;
(c) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550;
(d) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608;
(e) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 2635;
(f) He, Z.; Huang, Y.; Verpoort, F. Acta Chim. Sinica 2013, 71, 700. (何展荣, 黄毅勇, Verpoort, F. 化学学报, 2013, 71, 700).
(g) Sheng, Y.-F.; Zhang, A.-J.; Zheng, X.-J.; You, S.-L. 2008, 28, 605; For a recent example for chiral phosphoric acid catalyzed asymmetric Friedel-Crafts reaction, see:
(h) Zeng, M.; Zhang, W.; You, S.-L. Chin. J. Chem. 2012, 30, 2625.
[8] For reviews on chiral phosphoric acid, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999;
(b) Akiyama, T. Chem. Rev. 2007, 107, 5744;
(c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156;
(d) Rueping, M.; Kuenkel, A.; Atodiresei, L. Chem. Soc. Rev. 2011, 40, 4539;
(e) Su, Y.; Shi, F. Chin. J. Org. Chem. 2010, 30, 486. (苏亚军, 史福强, 有机化学, 2010, 30, 486).
[9] For reviews on chiral phosphoric acid and metal combined catalysis, see: (a) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. Eur. J. 2010, 16, 9350;
(b) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603;
(c) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518;
(d) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534;
(e) Wu, X.; Li, M.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 1091. (吴祥, 李名丽, 龚流柱, 化学学报, 2013, 71,1091); For a review on chiral phosphate salts catalysis, see:
(f) Yamashita, Y.; Tsubogo, T.; Kobayashi, S. Chem. Sci. 2012, 3, 967.
[10] For a review on asymmetric binary-acid catalysis, see: Lv, J.; Luo, S. Chem. Commun. 2013, 49, 847.
[11] (a) Lv, J.; Li, X.; Zhang, L.; Luo, S.; Cheng, J.-P. Org. Lett. 2010, 12, 1096;
(b) Lv, J.; Zhang, L.; Zhou, Y.; Nie, Z.; Luo, S.; Cheng, J.-P. Angew. Chem., Int. Ed. 2011, 50, 6610;
(c) Lv, J.; Zhang, L.; Hu, S.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 799;
(d) Lv, J.; Zhong, X.; Luo, S.; Cheng, J.-P. Acta Chim. Sinica 2012, 70, 1518.(吕健, 钟兴仁, 程津培, 罗三中, 化学学报, 2012, 70, 1518);
(e) Chen, L.; Zhang, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8891;
(f) Zhang, L.; Chen, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Asian J. 2012, 7, 2569;
(g) Lv, J.; Zhang, L.; Cheng, J.-P.; Luo, S. Angew. Chem., Int. Ed. 2013, 52, 9786.
[12] (a) Huang, J.-M.; Wong, C.-M.; Xu, F.-X.; Loh, T.-P. Tetrahedron Lett. 2007, 48, 3375;
(b) Zhao, J.-F.; Zhao, Y.-J.; Loh, T.-P. Chem. Commun. 2008, 1353;
(c) Zhao, Y.-J.; Tan, L.-J. S.; Li, B.; Li, S.-M.; Loh, T.-P. Chem. Commun. 2009, 3738.
/
〈 |
|
〉 |