研究论文

环状烯酮与环状1-氮杂二烯的非对映及对映选择性[4+2]环加成反应

  • 周容 ,
  • 肖微 ,
  • 尹祥 ,
  • 詹固 ,
  • 陈应春
展开
  • 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 成都 610041

收稿日期: 2014-04-18

  网络出版日期: 2014-05-06

基金资助

项目受国家自然科学基金(Nos.21125206,21372160)和973项目(No.2010CB833300)资助.

Diastereo- and Enantioselective [4+2] Cycloadditions of Cyclic Enones with Cyclic 1-Azadienes

  • Zhou Rong ,
  • Xiao Wei ,
  • Yin Xiang ,
  • Zhan Gu ,
  • Chen Yingchun
Expand
  • Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041

Received date: 2014-04-18

  Online published: 2014-05-06

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21125206 and 21372160) and 973 Program (No. 2010CB833300).

摘要

有机胺能催化环状烯酮化合物在多个位点发生不对称合成反应. 最近,我们发展了手性伯胺催化β-取代2-环戊烯酮与从糖精衍生的1-氮杂二烯的α’γ-区域选择性的[5+3]形式环加成反应. 这里我们将报道采用β-取代2-环己烯酮或β-未取代2-环戊烯酮时,在手性伯胺催化下却与相同1-氮杂二烯发生完全不同的α’β-区域选择性的不对称[4+2]环加成反应,生成高度官能团化的手性[2.2.2]或[2.2.1]桥环骨架结构. 重要的是利用不同类型的手性伯胺催化剂能够实现非对映选择性的反转,分别制备高立体选择性的endo-或exo-环加成产物.

本文引用格式

周容 , 肖微 , 尹祥 , 詹固 , 陈应春 . 环状烯酮与环状1-氮杂二烯的非对映及对映选择性[4+2]环加成反应[J]. 化学学报, 2014 , 72(7) : 862 -866 . DOI: 10.6023/A14040294

Abstract

Asymmetric aminocatalysis provides versatile tools for the stereoselective functionalizations of cyclic enone substrates at various sites. Recently, we developed an unusual [5+3] formal cycloaddition reaction of β-substituted 2-cyclopentenones or simple 2-cyclohexenone with bis(electrophilic) 1-azadienes, 3-vinyl-1,2-benzoisothiazole-1,1-dioxides, through α'-regioselective Michael addition followed by γ-regioselective intramolecular Mannich reaction via cascade cross-conjugated dienamine-endo-dienamine catalysis of a chiral primary amine. However, a completely different reaction pathway was disclosed when other type of cyclic enones, such as β-substituted 2-cyclohexenones or simple 2-cyclopentenone, were used under the similar aminocatalytic conditions. In this case, the same 1-azadiene partners act as electron-deficient dienophiles, and α',β-regioselective [4+2] cycloadditions occurred via cross-conjugated dienamine catalysis, giving bridged [2.2.2] octane or [2.2.1] heptane architectures with densely adorned functionalities. After systematically screening a number of reaction parameters, such as catalyst, acid additive and solvent, we can successfully realize the diastereodivergence in the above mentioned [4+2] cycloadditions. The endo-selective cycloadducts were efficiently obtained in moderate to excellent stereoselectivity (5:1~>19:1 dr, 86%~98% ee) in toluene at 50 ℃, by employing a (R,R)-1,2- diphenylethanediamine derived bifunctional primary amine catalyst with a benzothiadiazine-1,1-dioxide group as hydrogen bonding donor and in combination of benzoic acid. Even exclusive endo-selectivity (>19:1 dr) was consistently observed in the reactions of simple 2-cyclopentenone. A combination of 9-amino-9-deoxyepiquinidine and salicylic acid also produced the endo-selective cycloadduct but with slightly lower diastereoselectivity. In contrast, the diastereoselective [4+2] cycloadditions of β-substituted 2-cyclohexenones and 3-vinyl-1,2-benzoisothiazole-1,1-dioxides could be pleasingly switched by using 6'-OH-9-amino-9-deoxyepiquinidine and benzoic acid in PhCF3 at 50 ℃, providing the exo-selective cycloadducts with good results in terms of diastereo- and enantioselectivity (4:1~>19:1 dr, 83%~95% ee). 6'-OH-9-amino- 9-deoxyepiquinine could afford the exo-cycloadducts with an opposite configuration, but with less satisfactory stereoselectivity (3 examples, 5:1~9:1 dr, 62%~71% ee). Moreover, the analogous 4-styryl-1,2,3-benzoxathiazine-2,2-dioxide could be smoothly utilized as the dienophilic partner, which further enriched the functionalities of the [4+2] cycloadducts.

参考文献

[1] For selected examples, see: (a) Toyota, M.; Yokota, M.; Ihara, M. Org. Lett. 1999, 1, 1627;
(b) Li, L.-M.; Li, G.-Y.; Li, S.-H.; Weng, Z.-Y.; Xiao, W.-L.; Han, Q.-B.; Ding, L.-S.; Lou, L.-G.; Sun, H.-D. Chem. Biodivers. 2006, 3, 1031;
(c) Jayasuriya, H.; Herath, K. B.; Zhang, C.; Zink, D. L.; Basilio, A.; Genilloud, O.; Diez, M. T.; Vicente, F.; Gonzalez, I.; Salazar, O.; Pelaez, F.; Cummings, R.; Ha, S.; Wang, J.; Singh, S. B. Angew. Chem., Int. Ed. 2007, 46, 4684;
(d) Spangler, J. E.; Sorensen, E. J. Tetrahedron 2009, 65, 6739;
(e) Sacher, J. R.; Weinreb, S. M. Org. Lett. 2012, 14, 2172;
(f) Abdelkafi, H.; Herson, P.; Nay, B. Org. Lett. 2012, 14, 1270.

[2] For selected examples, see: (a) Li, S.-H.; Wang, J.; Niu, X.-M.; Shen, Y.-H.; Zhang, H.-J.; Sun, H.-D.; Li, M.-L.; Tian, Q.-E.; Lu, Y.; Cao, P.; Zheng, Q.-T. Org. Lett. 2004, 6, 4327;
(b) Lim, S.-H.; Sim, K.-M.; Abdullah, Z.; Hiraku, O.; Hayashi, M.; Komiyama, K.; Kam, T.-S. J. Nat. Prod. 2007, 70, 1380;
(c) Burden, P. M.; Ai, T.-H.; Lin, H.-Q.; Akinci, M.; Costandi, M.; Hambley, T. M.; Johnston, G. A. R. J. Med. Chem. 2000, 43, 4629;
(d) For a review, see: Lin, C.-J.; Wang, J.-X.; You, Q.-D.; Li, N.-G.; Liu, X.-R. Chin. J. Org. Chem. 2008, 28, 218. (林昌军, 王进欣, 尤启冬, 李念光, 刘晓蓉, 有机化学, 2008, 28, 218.)

[3] (a) Xu, D.-Q.; Xia, A.-B.; Luo, S.-P.; Tang, J.; Zhang, S.; Jiang, J.-R.; Xu, Z.-Y. Angew. Chem., Int. Ed. 2009, 48, 3821;
(b) Wu, L.-Y.; Bencivenni, G.; Mancinelli, M.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7196;
(c) For a review on dienamine catalysis, see: Ramachary, D. B.; Reddy, Y. V. Eur. J. Org. Chem. 2012, 865.

[4] Feng, X.; Zhou, Z.; Zhou, R.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. J. Am. Chem. Soc. 2012, 134, 19942.

[5] For selected examples of diastereodivergent catalysis, see: (a) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2000, 39, 2327;
(b) Huang, Z.-Z.; Kang, Y.-B.; Zhou, J.; Ye, M.-C.; Tang, Y. Org. Lett. 2004, 6, 1677;
(c) Zhang, H.; Mifsud, M.; Tanaka, F.; Barbas, C. F. Ⅲ. J. Am. Chem. Soc. 2006, 128, 9630;
(d) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979;
(e) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768;
(f) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362;
(g) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 3779;
(h) Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009, 11, 677;
(i) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 17934;
(j) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750;
(k) Lu, G.; Yoshino, T.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2011, 50, 4382;
(l) Maroto, E. E.; Filippone, S.; Martín-Domenech, A.; Suarez, M.; Martín, N. J. Am. Chem. Soc. 2012, 134, 12936.

[6] For reviews of cinchona-based primary aminocatalysis, see: (a) Chen, Y.-C. Synlett 2008, 13, 1919;
(b) Jiang, L.; Chen, Y.-C. Catal. Sci. Technol. 2011, 1, 354;
(c) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748.

[7] (a) Abramovitch, R. A.; Shinkai, I.; Mavunkel, B. J.; More, K. M.; O’Conner, S.; Ooi, G. H.; Pennington, W. T.; Srinivasan, P. C.; Stowers, J. R. Tetrahedron 1996, 52, 3339;
(b) Ma, C.; Gu, J.; Teng, B.; Zhou, Q.-Q.; Li, R.; Chen, Y.-C. Org. Lett. 2013, 15, 6206;
(c) Feng, X.; Zhou, Z.; Ma, C.; Yin, X.; Li, R.; Dong, L.; Chen, Y.-C. Angew. Chem., Int. Ed. 2013, 52, 14173.

[8] Yin, X.; Zheng, Y.; Feng, X.; Jiang, K.; Wei, X.-Z.; Gao, N.; Chen, Y.-C. Angew. Chem., Int. Ed. 2014, 53, DOI: 10.1002/anie.201403753.

[9] Chen, W.; Du, W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2007, 46, 7667.

[10] For a review of bifunctional primary amine catalysts, see: Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem. 2013, 11, 7051.

[11] (a) Inokuma, T.; Furukawa, M.; Uno, T.; Suzuki, Y.; Yoshida, K.; Yano, Y.; Matsuzaki, K.; Takemoto, Y. Chem. Eur. J. 2011, 17, 10470;
(b) Kobayashi, Y.; Taniguchi, Y.; Hayama, N.; Inokuma, T.; Takemoto, Y. Angew. Chem., Int. Ed. 2013, 52, 11114.

[12] Tripathi, M.; Dhar, D. N. J. Heterocycl. Chem. 1988, 25, 1191.

[13] CCDC-997892 (3j) and CCDC-997893 (3h') contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
文章导航

/